
Structured Programming

Lecture 2
Computer Programming Fundamentals (1)

Prepared by________________________________

Md. Mijanur Rahman, Prof. Dr.
Dept. of Computer Science and Engineering

Jatiya Kabi Kazi Nazrul Islam University, Bangladesh
www.mijanrahman.com

CSE 06131223 CSE 06131224

Contents
C o m p u t e r P r o g r a m m i n g F u n d a m e n t a l s

• Introduction

• Software and Programming Language

• Types of Programming Languages

• Commonly Used Programming Languages

• Program Development Life Cycle

• Types of Errors in Programs

• Algorithm and Flowchart

• Control Structures

• Pseudo Code

• Programming Paradigms

Computer Programming Fundamentals 2

Introduction
• Computer is an electronic device that accepts data, processes it, and generates the

relevant output. It can perform both simple and complex tasks with very high speed
and accuracy.

• The set of instructions that instruct the computer about the way the task is to be
performed is called a program. A program is required for processing all kind of tasks—
simple tasks like addition of two numbers, and complex tasks like object recognition,
gaming etc.

• The instructions in a program have three essential parts:
1. Instructions to accept the input data that needs to be processed,

2. Instructions that will act upon the input data and process it, and

3. Instructions to provide the output to user

Computer Programming Fundamentals 3

Software and Programming Language
• A set of instructions that directs a computer’s hardware to perform a task is called a program,

or software program. Thus, a program is a sequence of instructions written to solve a
particular problem.

• Software comprises the entire set of programs, procedures, and routines associated with the
operation of a computer system. The two main types of software are system software and
application software.

1. System software controls a computer’s internal functioning (through an operating system), and also
controls such peripherals as monitors, printers, and storage devices. It also includes programming
language.

2. Application software, by contrast, directs the computer to execute commands given by the user and
may be said to include any program that processes data for a user. Application software thus includes
word processors, spreadsheets, database management, inventory and payroll programs, and many
other applications.

Computer Programming Fundamentals 4

Software and Programming Language
Programming Language:

• A programming language is a computer language that is

used by programmers (developers) to communicate with

computers by writing a computer program. It is a set of

instructions written in any specific language (C, C++, Java,

Python) to perform a specific task.

• A programming language is mainly used to develop

desktop applications, websites, and mobile applications.

• Programming language is further divided into three parts:

1. Low-level programming language

2. High-level programming language

3. Middle-level programming language

Computer Programming Fundamentals 5

Types of Programming Languages
1. Low-level Programming Language:
• Low-level language is machine-dependent (0s and 1s) programming language. The processor runs low- level programs directly

without the need of a compiler or interpreter, so the programs written in low-level language can be run very fast. Low-level
language is further divided into two parts:

o i. Machine Language: Machine language is a type of low-level programming language. It is also called as machine code or
object code. Machine language is easier to read because it is normally displayed in binary or hexadecimal form (base 16)
form. It does not require a translator to convert the programs because computers directly understand the machine language
programs.

o The advantage of machine language is that it helps the programmer to execute the programs faster than the high-level
programming language.

o ii. Assembly Language: Assembly language (ASM) is also a type of low-level programming language that is designed for
specific processors. It represents the set of instructions in a symbolic and human-understandable form. It uses an
assembler to convert the assembly language to machine language.

o The advantage of assembly language is that it requires less memory and less execution time to execute a program.

Computer Programming Fundamentals 6

Types of Programming Languages
2. High-level Programming Language:

• High-level programming language (HLL) is designed for developing user-friendly software programs
and websites. This programming language requires a compiler or interpreter to translate the program
into machine language (execute the program).

o The main advantage of a high-level language is that it is easy to read, write, and maintain.

o High-level programming language includes Python, Java, JavaScript, PHP, C#, C++, Objective C, Cobol, Perl, Pascal,
LISP, FORTRAN, and Swift programming language.

o A high-level language is further divided into three parts:

i. Procedural Oriented programming language

ii. Object-Oriented Programming language

iii. Natural language

Computer Programming Fundamentals 7

Types of Programming Languages
High-level Programming Language: Procedural Oriented programming language

• Procedural Oriented Programming (POP) language is derived from structured programming
and based upon the procedure call concept. It divides a program into small procedures
called routines or functions.

• Procedural Oriented programming language is used by a software programmer to create a
program that can be accomplished by using a programming editor like IDE, Adobe
Dreamweaver, or Microsoft Visual Studio.

• The advantage of POP language is that it helps programmers to easily track the program flow
and code can be reused in different parts of the program.

• Example: C, FORTRAN, Basic, Pascal, etc.

Computer Programming Fundamentals 8

Types of Programming Languages
High-level Programming Language: Object-Oriented Programming Language

• Object-Oriented Programming (OOP) language is based upon the objects. In
this programming language, programs are divided into small parts called objects. It is used to
implement real-world entities like inheritance, polymorphism, abstraction, etc in the program
to makes the program resusable, efficient, and easy-to-use.

• The main advantage of object-oriented programming is that OOP is faster and easier to
execute, maintain, modify, as well as debug.

• Example: C++, Java, Python, C#, etc.

Computer Programming Fundamentals 9

Types of Programming Languages
High-level Programming Language: Natural Language

• Natural language is a part of human languages such as English, Russian, German, and
Japanese. It is used by machines to understand, manipulate, and interpret human's language.

• It is used by developers to perform tasks such as translation, automatic summarization,
Named Entity Recognition (NER), relationship extraction, and topic segmentation.

• The main advantage of natural language is that it helps users to ask questions in any subject
and directly respond within seconds.

Computer Programming Fundamentals 10

Types of Programming Languages
3. Middle-level Programming Language:

• Middle-level programming language lies between the low-level programming language and
high-level programming language. It is also known as the intermediate programming language
and pseudo-language.

• A middle-level programming language's advantages are that it supports the features of high-
level programming, it is a user-friendly language, and closely related to machine language and
human language.

• Example: C, C++ language

Computer Programming Fundamentals 11

Commonly Used Programming Languages
Most Commonly Used Programming Languages:

• As we all know, the programming language makes our life simpler. Currently, all sectors (like
education, health, financial organization, automobiles, and more) completely depend upon
the programming language.

• There are dozens of programming languages used by the industries. Some most widely used
programming languages are given below:

1. C Language:
• C is a popular, simple, and flexible general-purpose computer programming language. Dennis

M Ritchie develops it in 1972 at AT&T. It is a combination of both low-level programming
language as well as a high-level programming language. It is used to design applications
like Text Editors, Compilers, Network devices, and many more.

Computer Programming Fundamentals 12

Commonly Used Programming Languages
Most Commonly Used Programming Languages:

2. C++ Language:
• C++ is one of the thousands of programming languages that we use to develop software. C++

programming language is developed by Bjarne Stroustrup in 1980. It is similar to the C
programming language but also includes some additional features such as exception handling,
object-oriented programming, type checking, etc.

3. Java Language:
• Java is a simple, secure, platform-independent, reliable, architecture-neutral high-level

programming language developed by Sun Microsystems in 1995. Now, Java is owned by
Oracle. It is mainly used to develop bank, retail, information technology, android, big data,
research community, web, and desktop applications.

Computer Programming Fundamentals 13

Commonly Used Programming Languages
Most Commonly Used Programming Languages:

4. C# Language:
• C# (pronounced as C sharp) is a modern, general-purpose, and object-oriented programming

language used with XML based Web services on the .NET platform. It is mainly designed to
improve productivity in web applications. It is easier to learn for those users who have
sufficient knowledge of common programming languages like C, C++, or Java.

5. JavaScript Language:
• JavaScript is a type of scripting language that is used on both client-side as well as a server-

side. It is developed in the 1990s for the Netscape Navigator web browser. It allows
programmers to implement complex features to make web pages alive. It helps programmers
to create dynamic websites, servers, mobile applications, animated graphics, games, and
more.

Computer Programming Fundamentals 14

Commonly Used Programming Languages

Most Commonly Used Programming Languages:

6. HTML Language:
• HTML stands for Hyper Text Markup Language. HTML is the standard markup language for

creating Web pages. It describes the structure of a Web page and its contents. For example,
content could be structured within a set of paragraphs, a list of bulleted points, or using
images and data tables.

7. PHP Language:

• PHP stands for Hypertext Preprocessor. It is an open-source, powerful server-side scripting

language mainly used to create static as well as dynamic websites. It is developed by Rasmus

Laird in 1994. Inside the php, we can also write HTML, CSS, and JavaScript code. To save php

file, file extension .php is used.

Computer Programming Fundamentals 15

Commonly Used Programming Languages

Most Commonly Used Programming Languages:

8. Python Language:
• Python is one of the most widely used user-friendly programming languages. It is an open-

source and easy to learn programming language developed in the 1990s. It is mostly used
in Machine learning, Artificial intelligence, Big Data, GUI based desktop applications, and
Robotics.

9. R Language:

• R is one of the popular programming languages that is used in data analytics, scientific

research, machine learning algorithms, and statistical computing. It is developed in 1993 by

Ross Ihaka and Robert Gentleman. It helps marketers and data scientists to easily analyze,

present, and visualize data.

Computer Programming Fundamentals 16

Commonly Used Programming Languages

Most Commonly Used Programming Languages:

10. Ruby Language:
• Ruby is an open-source, general-purpose, and pure object-oriented programming language

released in 1993. It is used in front-end and back-end web development. It is mainly designed
to write CGI (Common Gateway Interface) scripts.

11. Go Language:

• Go or Golang is an open-source programming language. It is used to build simple, reliable, and

efficient software. It is developed by Robert Griesemer, Rob Pike, and Ken Thompson in 2007.

Computer Programming Fundamentals 17

Program Development Life Cycle
• The Program Development Cycle has its own steps.

1. In the first step, you use an editor to create a disk file
containing your source code.

2. In the second step, you compile the source code to
create an object file.

3. In the third step, you link the compiled code to create
an executable file.

4. The fourth step is to run the program to see whether it
works as originally planned.

Computer Programming Fundamentals 18

Fig. The C source code that you write is converted to object code
by the compiler and then to an executable file by the linker.

Program Development Life Cycle
1. Creating the Source Code

o Source code is a series of statements or commands that are used
to instruct the computer to perform your desired tasks. The first
step in the Program Development Cycle is to enter source code
into an editor.

2. Compiling the Source Code

• A computer requires digital, or binary, instructions in what is called
machine language. Before run your program, it must be translated
from source code to machine language. This translation is
performed by a program called a compiler.

• The compiler takes your source code file as input and produces a
disk file containing the machine language instructions that
correspond to your source code statements. The machine
language instructions created by the compiler are called object
code, and the disk file containing them is called an object file
(.OBJ extension).

Computer Programming Fundamentals 19

Fig. The C source code that you write is converted to object code
by the compiler and then to an executable file by the linker.

Program Development Life Cycle
3. Linking to Create an Executable File

o A part of the C language is a function library that contains
object code for predefined functions. If your program uses any
of these functions, the object file produced when your source
code was compiled must be combined with object code from
the function library to create the final executable program.
This process is called linking, and it's performed by a program
called a linker.

4. Executing/Run the program

o Once your program is compiled and linked to create an
executable file, you can run it.

o If you run the program and receive results different from what
you thought you would, you need to go back to the first step.
You must identify what caused the problem and correct it in
the source code. You keep following this cycle until you get the
program to execute exactly as you intended.

Computer Programming Fundamentals 20

Fig. The C source code that you write is converted to object code
by the compiler and then to an executable file by the linker.

Types of Errors in Programs
• Syntax Errors: Violation of syntactic rules in a Programming Language generates syntax

errors. Compiler helps user to identify the Syntax error and correct it. A syntax error is

an error in the typing of the code or statement.

• For example: In C, "prinff()“ would be a syntax error, done by mistyping. It would be

“printf()”.

• Commonly occurred syntax errors are:
• If we miss the parenthesis (}) while writing the code.
• Displaying the value of a variable without its declaration.
• If we miss the semicolon (;) at the end of the statement.

Computer Programming Fundamentals 21

Types of Errors in Programs
• Semantic Errors: Semantic errors are the errors that occurred when the statements are not

understandable by the compiler. Doing logical mistakes causes semantic errors. The Compiler
cannot notice these errors, but on execution, they cause unexpected wrong results. These
errors can only be corrected by the careful programmer.

• A semantic error basically means invalid logic. For example: 2+2=1 would be a semantic error
because it is incorrect logic.

• Run-time Errors: Sometimes the errors exist during the execution-time even after the
successful compilation known as run-time errors. When the program is running, and it is not
able to perform the operation is the main cause of the run-time error.

• The division by zero is the common example of the run-time error. These errors are very
difficult to find, as the compiler does not point to these errors.

Computer Programming Fundamentals 22

Computer Programming Fundamentals 23

?THE END

