CSE 06131223 4 CSE 06131224

Structured Programming

Lecture 3
Computer Programming Fundamentals (2)

Prepared by
@M Md. Mijanur Rahman, Prof. Dr.
| Dept. of Computer Science and Engineering

@ ' Jatiya Kabi Kazi Nazrul Islam University, Bangladesh
"ﬂ www.mijanrahman.com

C

Contents

Computer Programming Fundamentals

Algorithm and Flowchart
Control Structures
Pseudo Code
Programming Paradigms

-4

Algorithm

In computer programming terms, an algorithm is a set of well-defined instructions to
solve a particular problem. It is a step-by-step procedure for solving a task or a
problem. It takes a set of input and produces a desired output.

This method of solution should be designed in a programming manner. Before starting
to write the code of a computer program, a programmer has to decide and design
steps that is required to solve the problem; this is called designing the algorithm of

the proposed program.

Thus, an algorithm is an ordered sequence of finite, well defined, unambiguous
instructions for completing a task. It is an English-like representation of the logic which

is used to solve the problem.

For accomplishing a particular task, different algorithms can be written. The different
algorithms differ in their requirements of time and space. The programmer selects the best-

suited algorithm for the given task to be solved.
Algorithms consist of two things:
The actions that must be taken, and
The order they must be done in.
For example, an algorithm to add two numbers:
Take two number inputs
Add numbers using the + operator

Display the result

Qualities of Good Algorithms:
Input and output should be defined precisely.
Each step in the algorithm should be clear and unambiguous.
Algorithms should be most effective among many different ways to solve a problem.

An algorithm shouldn't include computer code. Instead, the algorithm should be written in
such a way that it can be used in different programming languages.

Algorithm 1: Add two numbers entered by the user

: Start
: Declare variables numl1, num2 and sum.
: Read values num1 and num2.

: Add num1 and num2 and assign the result to sum.
sumenum1+num2
5: Display sum
. Stop

Algorithm 2: Find the largest number among three numbers

Start

Declare variables a,b and c.
Read variables a,b and c.

Ifa>b
If a >c
Display
Else
Display
Else
If b > ¢
Display
Else
Display
Step 5: Stop

the largest number.

the largest number.

the largest number.

the greatest number.

Algorithm 3: Find Root of the quadratic equatin ax® +bx+c =0

Start
Declare variables a, b, ¢, D, x1, x2, rp and ip;
Calculate discriminant
D « b2-4ac
IfTD=20
r1 « (-b+VD)/2a
r2 « (-b-vD)/2a
Display r1 and r2 as roots.

Calculate real part and imaginary part
rp « -b/2a

ip « V(-D)/2a

Display rp+j(ip) and rp-j(ip) as roots

Algorithm 4: Find the factorial of a number

: Start
: Declare variables n, factorial and 1.
Initialize variables
factorial « 1
1«1

4: Read value of n
Repeat the steps until 1 =
.1: factorial « factorial*i
20 1 « 1+1
: Display factorial
. Stop

Algorithm 5: Check whether a number is prime or not

Start
Declare variables n, i, flag.
Initialize variables
flag « 1
1 « 2
Read n from the user.
: Repeat the steps until i=(n/2)
.1 If remainder of n+i equals 0O
flag « O
Go to step 6
2 1« 1+1
If flag = 0
Display n is not prime
else
Display n is prime
Stop

Types of Algorithms

Algorithms are classified based on the concepts that they use to accomplish a task. While
there are many types of algorithms, the most fundamental types of computer science
algorithms are:

Divide and conquer algorithms — divide the problem into smaller subproblems of the
same type; solve those smaller problems, and combine those solutions to solve the
original problem.

Brute force algorithms — try all possible solutions until a satisfactory solution is found.

Randomized algorithms — use a random number at least once during the computation to
find a solution to the problem.

The most fundamental types of computer science algorithms are:

Greedy algorithms — find an optimal solution at the local level with the intent of finding an
optimal solution for the whole problem.

Recursive algorithms — solve the lowest and simplest version of a problem to then solve
increasingly larger versions of the problem until the solution to the original problem is
found.

Backtracking algorithms — divide the problem into subproblems, each which can be
attempted to be solved; however, if the desired solution is not reached, move backwards
in the problem until a path is found that moves it forward.

Dynamic programming algorithms — break a complex problem into a collection of simpler
subproblems, then solve each of those subproblems only once, storing their solution for
future use instead of re-computing their solutions.

Flowchart

A flowchart is a diagrammatic representation of the logic for solving a task. A
flowchart is drawn using boxes of different shapes with lines connecting them to show
the flow of control.

The purpose of drawing a flowchart is to make the logic of the program clearer in a
visual form. The logic of the program is communicated in a much better way using a
flowchart.

_ Output:
i

Flowchart Symbols: A flowchart is drawn using different kinds of symbols. A symbol
used in a flowchart is for a specific purpose.

Symbol Name
) Start/end
— Arrows
| / Input/Output
Process
<L V\\v—/ Decision

Function

An oval represents a start
or end point.

A line is a connector that shows
relationships between the
representative shapes.

A parallelogram represents input
or ouptut.

A rectangle represents a process.

A diamond indicates a decision.

* Every flowchart has to start with a TERMINAL shape containing the caption
START and has to end with another TERMINAL shape containing the caption
of END.

* INPUT / OUTPUT shape is used to indicate the time and place of reading
some values and/or giving some output to the user.

* PROCESS symbol is used to represent assignments and manipulations of
data such as arithmetic operationsor movement of data from one variable
to the other.

Symbol Name

Start/end
Arrows
Input/Output
Process

Decision

¢LUIC

Function

An oval represents a start
or end point.

A line is a connector that shows
relationships between the
representative shapes.

A parallelogram represents input
or ouptut.

A rectangle represents a process.

A diamond indicates a decision.

DECISION symbol represents the comparison of two
values. Alternating course of actions will be
followed depending on the result of checked
criteria.

CONNECTOR symbol is used to represent the exit to
or entry from another part of the program. It is
used to show the connections of two pages, when
your design occupies more then one page.

FLOWLINE symbol is used to show the direction of
the program flow between other symbols.

All Flowcharts begin with the
(START l START =ymbaol. This shape is

called a terminatar.

+ Fig: Sample flowchart of a program.

IMPUTS, such as materials or

|HF'L|T cormponents,
eq Printed Circuit Board (FCE)

PROCESS PROCESSES, zuch az activities
or tazsks, are sometimes used to

link to a subroutine Canother
flowechart) with more detailed
steps, eqgdrill Printed Circuit
Eoard(FPCE)

DECISION
The DECISION zymbol checks a

condition before carrying on, &g
iz the drilling accurate?

/ OUTPUT / OUTPUTS, sqPrinted Circuit

EBoard(FPCE) with hales drilled.

END All Flowcharts end with the EMD
syrnbol. This shape iz called a

terminator.

To find sum of two numbers:

Algorithm Flowchart C Program
#include<stdio.h>
1. Start Start
2. Reada. b l int main()
3. c=a+b {
4. Print or display c Reada, b int a, b, c;
5. Stop : . : “
l printf("Enter value of a: ");
scanf("%d", &a);
c=a+h
printf("Enter value of b: ");
l scanf("%d", &b);
c = a+b;
Write ¢
printf("Sum of given two numbers is: %d", c);
l return €;

}
Stop

To find area of a rectangle:

Algorithm

Start

Read side length, a
Read side length b
area = a*b

Print or display area
Stop

N

o

Flowchart

Start

Read a

Read b

area =2a*h

Write
area

Stop

C Program

#include<stdio.h>

int main()

r

1

-

int a, b, area;
printf("Enter side length a: \n");
scanf("%d", &a);

printf("Enter side length b: \n");
scanf("%d", &b);

area = a*b;
printf("Area of rectangle is: %d ", area);

return @;

To interchange the value of two numbers :

Algorithm Flowchart C Program
Start #include<stdio.h>
1. Start
2. Read two values into two variables a, b l A0t Sing)
3. Declare third vanable, c Read a t
c=a l : int a, b, c;
a=b printf(“Enter value of a:");
b=c¢ Read b , scanf("%d", &a);
'?' I;rmt o d1splay a.b l printf("Enter value of b:");
5. Stop =7 scanf("%d", &b);
a=bh
b=¢ cC = aj;
a=b;
l b= cj
Write ‘
ab printf(“Values of a & b after swapping: “);
l printf(“a = ¥d\n", a);
printf("b = %", b);
Stop

return @;

Algorithm Flowchart
Start
1. Start
2. Initialize F=0,C=0 v
3. ReadF F=0,C=0
i C=(F3)*50
5. Write C !
6. Stop Read F

.

C=(F-32)*5/%

v

Write C

Stop

To convert temperature from Fahrenheit to Celsius:

C Program

#include<stdio.h>

int main()

:
1

float F, C;

printf("Enter Fahrenheit: ");
scanf("%f", &F);

C = (F-32)*5/9;

printf("“Temparature in Celsius is:

return @;

-~

", C);

To find the greatest of two numbers :

Algorithm Flowchart C Program
#include<stdio.h>
Start
1. Start | A steatig
2. Read AB Read A.B :
3. IfA=>Bthen .
; ; t A, B;
Print A is large l R
else _ . No " |sArB? Yes printf("Enter values of A, B: ");
Print B 1s large ‘ g l scanf("%d %d", &A, &B);
., Stap Write Wirtte .
Bixlarge Al Larg if (A>B)
: printf("A is Larger");
| | else
printf("B is Larger");
Y
Stop return 4;

St

To compute the sum of integers 1 to 100:

Algorithm Flowchart CProgram

1. Start . y= = -
2. Imtialize count 1 =1, sum =0 Start e
3. Sum=sum ey int main()
4. Incrementiby 1) {
5. Repeat steps 3 & 4 until 1 = 100 A2l int:ds sums
6. Prnt sum .
ol sSum »=¢;
7. Stop v for(i=1; i<101;i++)
sam = sum + § { .
sum = sum + 1ij;
‘)
- printf("Sum of integers from 1 to 100 is: %d", sum);
L=l+
return 2;
v }
No Is - -y
& >
1007 T4
Ye=
Write
2um

Stop

