
Structured Programming

Lecture 7
The Essentials of C Programs (2)

Prepared by________________________________

Md. Mijanur Rahman, Prof. Dr.
Dept. of Computer Science and Engineering

Jatiya Kabi Kazi Nazrul Islam University, Bangladesh
www.mijanrahman.com

CSE 06131223  CSE 06131224

http://www.mijanrahman.com/

Contents
T H E E S S E N T I A L S O F C P R O G R A M S

• Basic Structure of C Program

• C Tokens

• Data Types

• Variables Declaration

• Operators

• Constant Declaration

• Statements and Expressions

• Input and Output Statements

The Essentials of C Programs 2

Operators
• An operator is a symbol that instructs C to perform some operation, or action, on one or more

operands. An operand is something that an operator acts on. In C, all operands are
expressions. C operators fall into several categories:

• List of C++ Operators:

The Essentials of C Programs 3

Type Operators

Assignment Operator =

Compound assignment Operator +=, -=, *=, /=, %=, >>=, <<=, &=, ^=, |==

Arithmetic Operator +,-,*,/,%

Increment/Decrement Operator ++,--

Relational Operator ==,>,>=,<,<=,!=

Logical Operator &&, ||, !

Bitwise Operators &, |, ^, ~, >>, <<

Conditional Operator ?:

Operators
Assignment Operator:

• Assignment Operators that are used to assign the operator on the left the value on the right.
The basic assignment operator is the "=" operator.

Compound Assignment Operators:

• These operators are used modify the current value stored in a variable. Some of the
compound assignment operators are +=, -=, *=, /=, %=, >>=, <<=, &=, ^=, |=.

The Essentials of C Programs 4

Operators
Arithmetic Operators in C:

• Arithmetic Operators are used to do basic arithmetic operations like addition,
subtraction, multiplication, division, modulus.

• The following table list the arithmetic operators used in C:

The Essentials of C Programs 5

Operator Action

+ Addition

- Subraction

* Multiplication

/ Division

% Modulus

Operators
Increment and Decrement Operators in C:

• The following table list the increment and decrement operators used in C:

The Essentials of C Programs 6

Operator Symbol Action Examples
Increment ++ Increments the operand by one ++x, x++
Decrement -- Decrements the operand by one --x, x--

Operators
Relational / Comparison Operators:

• Relational operators are used to compare two values or expressions to evaluate the
relationship. Following table lists the relational operators in C.

• The following table list the relational operators used in C:

The Essentials of C Programs 7

Operator Action

== Equal to

!= Not equal to

> Greater than

< Less than

>= Greater than or equal to

<= Less than or equal to

Expression How It Reads What It Evaluates To
5 == 1 Is 5 equal to 1? 0 (false)
5 > 1 Is 5 greater than 1? 1 (true)
5 != 1 Is 5 not equal to 1? 1 (true)
(5 + 10) == (3 * 5) Is (5 + 10) equal to (3 * 5)? 1 (true)

Operators
Logical Operators:

• The logical operators are used to logically combine, compare Boolean conditions or
expressions. The following table lists the operators.

• The following table list the logical operators used in C:

The Essentials of C Programs 8

Operator Action

! NOT

&& AND

|| OR

Operators
Bitwise Operators:

• Bitwise operators are AND, OR, XOR and NOT used to manipulate data at the bit level
by shifting or testing bits.

• The following table lists the bitwise operators in C:

The Essentials of C Programs 9

Operator Action

~ Bitwise NOT

&& Bitwise AND

|| Bitwise OR

^ XOR

<< Bitwise Shift Left

>> Bitwise Shift Right

Operators
Conditional Operator:

• Conditional operator is used to return a result based on a expression. This is the only operator
that has three operands which also be used instead of "If else" statement for ease of use.
Conditional operator is also known as "Ternary Operator".

• The conditional operator is C's only ternary operator, meaning that it takes three operands. Its
syntax is:

exp1 ? exp2 : exp3;

• If exp1 evaluates to true (that is, nonzero), the entire expression evaluates to the value of
exp2. If exp1 evaluates to false (that is, zero), the entire expression evaluates as the value of
exp3.

The Essentials of C Programs 10

Operators
Conditional Operator:

• For example, the following statement assigns the value 1 to x if y is true and assigns 100 to x if
y is false:

x = y ? 1 : 100;

• Likewise, to make z equal to the larger of x and y, you could write

z = (x > y) ? x : y;

• Perhaps you've noticed that the conditional operator functions somewhat like an if statement.
The preceding statement could also be written like this:

if (x > y)
z = x;

else
z = y;

The Essentials of C Programs 11

Constant
• Constants in C refer to fixed values that do not change during the execution of a

program. C supports several types of constants:
1. Numeric constants

i. Integer constants. Example: 123, -321, 0, +876

ii. Real constants. Example: 0.00065, -0.95, +345.60, 456.75, 0.76e4, 12e-5, -1.2E-2.

2. Character constants

i. Single character constants. Example: ‘A’, ‘x’, ‘9’, ‘;’, ‘ ‘

ii. String constants: Example: “Hello!”, “X”, “2014”.

The Essentials of C Programs 12

Constant Declaration
• Like a variable, a constant is a data storage location used by your program.

• Unlike a variable, the value stored in a constant can't be changed during program
execution.

• C has two types of constants:

(i) symbolic constants

(ii) constant variables

The Essentials of C Programs 13

Constant Declaration
Constant variables:

• The constant value cannot be changed by the program. A constant variable is declared
and initialized in the variable declaration section of the program and cannot be
modified thereafter.

• The type of value stored in the constant must also be specified in the declaration.

• For example, an integer constant can be declared as follows:

const int size = 100;

The Essentials of C Programs 14

Constant Declaration
Symbolic constants:

• A symbolic constant is a constant that is represented by a name (symbol) in your program. Like a

literal constant, a symbolic constant can't change. The actual value of the symbolic constant needs

to be entered only once, when it is first defined.

• A symbolic constant is defined in the preprocessor area of the program and is valid throughout the

entire program. A symbolic constant is defined as follows:

#define N 100

• For example, we can define PI constant value as follows:

#define PI 3.14159

• This symbolic constant with the name PI is used in the following expression:

circumference = PI * (2 * radius);

area = PI * (radius)*(radius);

The Essentials of C Programs 15

Constant Declaration

Symbolic constants:

• The following rules apply to a #define statement which define a symbolic constant:
1. Symbolic names have the same form as variable names.

2. No blank space between the pound sign ‘#’ and the word define is permitted.

3. ‘#’ is the first character in the line.

4. A blank space is required between #define and symbolic name and between the symbolic name
and the constant value.

5. #define statement must not end with a semicolon.

6. After definition, the symbolic name should not be assigned any other value.

7. Symbolic names are NOT declared for data types.

8. #define statements may appear anywhere in the program but before it is referenced in the
program.

The Essentials of C Programs 16

Expression and Statement
Expressions:

• An expression is a combination of constants, variables, and operators that are used to denote
computations.

• For instance, the following:

(2 + 3) * 10

is an expression that adds 2 and 3 first, and then multiplies the result of the addition by
10. (The final result of the expression is 50.)

• Similarly, the expression 10 * (4 + 5) yields 90. The 80/4 expression results in 20.

The Essentials of C Programs 17

Expression and Statement
Expressions:

• Here are some other examples of expressions:

The Essentials of C Programs 18

Expression Description
6 An expression of a constant.
i An expression of a variable.
6 + i An expression of a constant plus a variable.
exit(0) An expression of a function call.

Expression and Statement
Statements:

• In the C language, a statement is a complete instruction, ending with a semicolon.

• In many cases, you can turn an expression into a statement by simply adding a semicolon at the end of
the expression.

• For instance, the following

i = 1;

is a statement.

• Here are some other examples of statements:

i = (2 + 3) * 10;

i = 2 + 3 * 10;

j = 6 % 4;

k = i + j;

The Essentials of C Programs 19

Expression and Statement
Statement Blocks:

• A group of statements can form a statement block that starts with an opening brace ‘{‘ and ends with a
closing brace ‘}’. A statement block is treated as a single statement by the C compiler.

• For instance, the following

for(. . .) {

s3 = s1 + s2;

mul = s3 * c;

remainder = sum % c;

}

• is a statement block that starts with { and ends with }. Here for is a keyword in C that determines the
statement block.

The Essentials of C Programs 20

Expression and Statement
Statement Blocks:

• A statement block provides a way to group one or more statements together as a single
statement.

• Many C keywords can only control one statement.

• If you want to put more than one statement under the control of a C keyword, you can add
those statements into a statement block so that the block is considered one statement by the
C keyword.

The Essentials of C Programs 21

Input and Output Statements

Input — scanf

• Getting a data value from input, i.e., from the keyboard.

• The following statement is used for getting a floating point number from input,

i.e., from the keyboard.

num is a variable of float type and %f is used for float.

• For integer number, we use “%d”, for character “%c”, etc.

The Essentials of C Programs 22

scanf("%f", &num);

Input and Output Statements

Output — printf

• Providing an output to the user.

• The following statement is used to display the result of a computation.

• In this statement:
• “The average is %f" is the control string

• avg is the variable to be printed

• %f is a conversion specifier indicating that the type of the corresponding variable to be printed is
floating-point number.

The Essentials of C Programs 23

printf(“The average is %f", avg);

Sample Programs
Investment Program:

Output:

Enter amount, rate and year:

10000 14 5

11400.00

12996.00

14815.44

16889.60

19254.15

The Essentials of C Programs 24

1. #include<stdio.h>

2. #include<conio.h>

3. void main()

4. {

5. int n, year;

6. float amount, rate, value;

7. printf("Enter amount, rate and year:\n");

8. scanf("%f %f %d",&amount, &rate, &n);

9. year =0;

10. while(year<=n)

11. {

12. printf("%5d %.2f\n", year, amount);

13. value = amount + (rate/100)*amount;

14. year = year+1;

15. amount= value;

16. }

17. getch();

18. }

Sample Programs
Program: Area of a circle

1. #include <stdio.h>
2. #define PI 3.14159

3. Int main()
4. {
5. float radius, area;
6. printf("Enter the radius of a circle: ");
7. scanf("%f", &radius);
8. area = PI * radius * radius;
9. printf("\nArea = %f", area);
10. return 0;
11. }

The Essentials of C Programs 25

The Essentials of C Programs 26

?THE END

