
Prof. Dr. Md. Mijanur Rahman. www.mijanrahman.com
1

Basic Programming with Python

Prepared By:

Professor Dr. Md. Mijanur Rahman

Department of Computer Science & Engineering

Jatiya Kabi Kazi Nazrul Islam University

www.mijanrahman.com


Introduction To

Python Programming

CONTENTS
2.1. Python Programming ..1

2.1.1 Major Features of Python ..2

2.2. Basic Structure of Python Program ...2

2.2.1 Components of Python Program ..4

2.1. PYTHON PROGRAMMING

Python is a high-level, interpreted, dynamic, and object-oriented programming language. It is a

general-purpose language that is widely used for a wide range of tasks, including web

development, data analysis, machine learning, scientific computing, and much more. The language

was first released in 1991 by Guido van Rossum, and its design philosophy emphasizes code

readability and simplicity.

One of the key features of Python is its easy-to-learn syntax and dynamically-typed nature,

which allows developers to write code quickly and focus on the problem they are trying to solve

rather than getting bogged down by the syntax. Additionally, Python has a vast and growing library

of modules and packages that make it easy to perform tasks such as connecting to web servers,

reading and writing data from databases, and performing complex mathematical calculations.

http://www.mijanrahman.com/
http://www.mijanrahman.com/

2. Introduction to Python Programming

 Prof. Dr. Md. Mijanur Rahman. www.mijanrahman.com
2 2

Python is also widely used for artificial intelligence and machine learning applications, and its

simplicity and ease of use have made it one of the most popular programming languages for data

scientists and machine learning engineers. The language provides a variety of libraries and tools

for tasks such as data visualization, numerical computing, and machine learning, making it a great

choice for those looking to build AI applications.

2.1.1 Major Features of Python

The key features of the Python programming language include:

1. Easy-to-learn syntax: Python has a simple and easy-to-learn syntax, making it a great choice

for beginners. The language's design philosophy emphasizes code readability, which makes

it easier to understand and maintain code over time.

2. Dynamic typing: Python is a dynamically-typed language, which means that the data type

of a variable can change during the course of the program. This feature allows for greater

flexibility and ease of use, as developers don't have to worry about explicitly defining the

data type of a variable before using it.

3. Large standard library: Python has a large and growing standard library, which includes

modules and packages for a wide range of tasks, such as connecting to web servers, reading

and writing data from databases, and performing complex mathematical calculations.

4. Object-oriented programming: Python is an object-oriented language, which means that it

supports the creation and manipulation of objects. This feature makes it easier to write

organized and reusable code and to structure programs in a way that makes sense for the

problem being solved.

5. Interpreted language: Python is an interpreted language, which means that code is executed

line-by-line rather than being compiled into machine code before being executed. This

feature makes it easier to debug code, as errors can be detected and corrected more quickly.

6. Great for data analysis and machine learning: Python has become one of the most popular

programming languages for data analysis and machine learning thanks to its simplicity, ease

of use, and powerful libraries and tools for these tasks.

7. Cross-platform compatibility: Python is a cross-platform language, which means that code

written on one platform can run on any other platform with a Python interpreter installed.

This feature makes it easier to share code and collaborate with others.

2.2. BASIC STRUCTURE OF PYTHON PROGRAM

Python provides a very basic and simple structure for writing a program. It consists of different

sections. Some sections are compulsory, and some are optional. We can include or exclude the

optional sections as per requirement or as per the situation. Figure 2.1 shows the basic structure of

the Python program, and a brief explanation of each section in the Python program structure is as

follows:

1. Documentation section: The documentation section includes comments that specify the aim

of the program. We write comments in a program to improve the readability of the program.

2. Import statements: This section includes various in-built or user-defined modules in

different modules so that we can use functionality already defined in the existing module.

3. Global declaration section: In this section, we define global variables for the programs. A

global variable is a variable that we can access from anywhere in the program.

http://www.mijanrahman.com/

2. Introduction to Python Programming

 Prof. Dr. Md. Mijanur Rahman. www.mijanrahman.com
3 3

4. Class section: This section tells the information about the user-defined classes present in the

program. A class is a group of variables (called data members) and member functions (called

methods) that work on data members. It contains the class definition, data members, and

methods definition.

5. Subprogram section: In this section, we define user-defined functions. A function is a set

of statements that will execute when we call it from anywhere in the program.

6. Playground section: This is the main section where we call user-defined functions and class

methods. Moreover, we create an object of the class in this section.

In Python, there is no main function (i.e., main method) that separates the other section from

the playground (main) section. We can separate it by writing a comment line between the

playground and other sections for a better understanding.

Figure 2.1: A simple structure of a Python program.

Example 2.1: Hello World Program in Python

The following is a simple "Hello World" program in Python:

This is a 'Hello World' program in Python.
print("Hello, World!")

In this program, the first line specifies the comment telling the purpose of the program. It is not an

executable statement. The second line uses a print() function to display the string “Hello, World!”.

When you run this program, it will display the message "Hello, World!" in the output.

Output:

This is a basic introductory program that is often used to demonstrate the syntax and structure of

a programming language.

http://www.mijanrahman.com/

2. Introduction to Python Programming

 Prof. Dr. Md. Mijanur Rahman. www.mijanrahman.com
4 4

Example 2.2: Compute Sum of Numbers in Python

The following is an example program that will find the sum of two numbers in Python.

Python program to calculate the sum of two numbers.
x = int(input("Enter your first number: "))
y = int(input("Enter your second number: "))
sum = x + y
print("Sum of ", x, " and ",y, " = ", sum)

In this example, the first line specifies the comment telling the purpose of the program. It is not an

executable statement. The second and third lines create variables x and y, and stores the value of

two number entered by the programmer. The fourth line calculates the sum of the first number and

the second number and stores the outcome in the third variable ‘sum’. The fifth line displays the

outcome.

Output:

2.2.1 Components of Python Program

The basic structure of a Python program includes the following components:

1. Shebang line: It is an optional line that specifies the location of the Python interpreter on

the system. It starts with "#!" followed by the path to the Python interpreter. Example:

#!/usr/bin/env python

In this case, the shebang line indicates that the script should be run using the ‘python’

interpreter. The ‘/usr/bin/env’ part is a common way to locate the interpreter in a portable

manner, as it relies on the environment's PATH variable to find the appropriate interpreter.

2. Comments: In Python, we can add comments to the code to provide explanations, and

documentation, or to disable certain lines of code. Comments are ignored by the Python

interpreter and are meant for human readers.

The following are the two ways to write comments in Python:

a. Single-line comments: To add a comment that spans only a single line, we can use the

symbol. Everything following the # symbol on that line will be considered a

comment. Example:

This is a single-line comment in Python

b. Multi-line comments: If we want to add a comment that spans multiple lines, we can

enclose the comment in triple quotes (""" or '''). This is often referred to as a docstring

and can be used as a multi-line comment. Example:

"""
This is a multi-line comment

http://www.mijanrahman.com/

2. Introduction to Python Programming

 Prof. Dr. Md. Mijanur Rahman. www.mijanrahman.com
5 5

in Python using triple quotes.
It can span multiple lines.
"""

3. Import statements: These statements allow to import modules or libraries into the program.

The imported modules can provide additional functionality and classes in the program.

There are a few different ways to use import statements in Python:

a. Importing an entire module:

import module_name

This form of import statement allows to import an entire module. To access functions,

classes, or variables from the module, we need to prefix them with the module name

followed by a dot. Example:

import math
result = math.sqrt(16)

b. Importing specific names from a module:

from module_name import name1, name2

This form allows to import specific functions, classes, or variables directly into the

code, without needing to use the module name as a prefix. Example:

from math import sqrt, pi
result = sqrt(16)

c. Importing an entire module with a different name:

import module_name as alias_name

This form allows to import a module and assign it a different name (alias), which can

be useful if the original module name is long or conflicts with other names in the code.

Example:

import math as m
result = m.sqrt(16)

d. Importing all names from a module:

from module_name import *

This form imports all names (functions, classes, variables) from a module directly

into the code. However, it is generally considered good practice to avoid using this

form, as it can lead to name clashes and make the code less readable. Example:

from math import *
result = sqrt(16)

4. Function definitions: Functions are blocks of code that perform specific tasks. They can be

called multiple times from different parts of the program. Functions are defined using the

"def" keyword followed by the function name, parameters, and a colon. Example:

def function_name(parameters):
 # Function body
 # Code block with instructions
 # Optional return statement

http://www.mijanrahman.com/

2. Introduction to Python Programming

 Prof. Dr. Md. Mijanur Rahman. www.mijanrahman.com
6 6

 return value

5. Variables: Variables are used to store data in a program. Variables in Python can be

dynamically typed, meaning that the type of data stored in a variable can change during the

course of a program. We can assign a value to a variable using the assignment operator (=).

Example:

length = 5
width = 3
area = length * width # calculation using variables
name = "Rahman"
message = "Hello, " + name # concatenating strings

print("The area is:", area)
print(message)

6. Main code: This is the main body of the program where we can write the code logic. This

section can include conditional statements, loops, function calls, and other constructs. It

typically contains the main logic and flow of the program. The main code is not inside any

function or class definition.

In Python, the main code is often placed inside an ‘if __name__ == "__main__":’ block.

This is an example structure of a Python script with the main code:

Import statements (if required)
import module1
import module2

Function definitions (if required)
def some_function():
 # Function body
 pass

Main code block
if __name__ == "__main__":
 # Code here will be executed when the script is run directly
 # It can include function calls, variable assignments, control structures, etc.

 # Example:
 print("This is the main code.")
 result = some_function()
 print("Result:", result)

7. Output statements: These statements are used to print output to the screen or to another

output device. The "print" function is used to print output in Python. Example:

print("The sum is ", sum)

The structure of a Python program is flexible and there is no strict rule on the order in which these

components should be placed, but it is a good practice to follow a standard structure to make your

code more readable and maintainable.

http://www.mijanrahman.com/

2. Introduction to Python Programming

 Prof. Dr. Md. Mijanur Rahman. www.mijanrahman.com
7 7

Example 2.3: Demonstrating different types of comments in Python

This is a single-line comment

"""
This is a multi-line comment.
It spans multiple lines.
"""

'''
This is also a multi-line comment.
It can be enclosed within single quotes.
'''

Single-line comment at the end of a line
x = 5 # Assigning value 5 to variable x
print("The value of x:", x)

Multi-line comment followed by code
'''
The following code calculates the sum of two numbers.
'''
num1 = 10
num2 = 20
sum = num1 + num2
print("Number 1:", num1)
print("Number 2:", num2)
print("The sum is:", sum)

Comments for documentation
def add(x, y):
 """
 This function adds two numbers.

 Parameters:
 x (int): The first number.
 y (int): The second number.

 Returns:
 int: The sum of x and y.
 """
 return x + y

Commented-out code
print(add(5, 10))

This script includes single-line comments, multi-line comments, comments at the end of lines,

comments for documentation (docstrings), and commented-out code.

http://www.mijanrahman.com/

2. Introduction to Python Programming

 Prof. Dr. Md. Mijanur Rahman. www.mijanrahman.com
8 8

Example 2.4: Demonstrating import statements in Python

Importing an entire module
import math

x = 25
y = math.sqrt(x) # Calculate square root
print("The value of x:", x)
print("Square root of x:", y)

Importing specific functions from a module
from datetime import datetime

current_time = datetime.now()
print("Current time:", current_time)

Importing a module with an alias
import random as rnd
r = rnd.randint(1, 100) #Random integer between 1 and 100
print("Random number:", r)

Importing specific functions from a module with an alias
from time import time as current_time

print("Current timestamp:", current_time())

Importing all functions from a module
from statistics import *

data = [10, 20, 30, 40, 50, 60, 70, 80, 90, 100]
print("Dataset:", data)
print("Mean:", mean(data)) # Mean value
print("Median:", median(data)) # Median value

http://www.mijanrahman.com/

2. Introduction to Python Programming

 Prof. Dr. Md. Mijanur Rahman. www.mijanrahman.com
9 9

Example 2.5: Demonstrating variable assignment in Python

Integer assignment
x = 5
print("Integer assignment:")
print("x is:", x) # Output: 5

Float assignment
y = 3.14
print("\nFloat assignment:")
print("y is:", y) # Output: 3.14

String assignment
name = "Alice"
print("\nString assignment:")
print("name is:", name) # Output: Alice

Boolean assignment
is_valid = True
print("\nBoolean assignment:")
print("is_valid is:", is_valid) # Output: True

Multiple assignments
a, b, c = 1, 2, 3
print("\nMultiple assignments:")
print("a is:", a) # Output: 1
print("b is:", b) # Output: 2
print("c is:", c) # Output: 3

Swap values
x, y = y, x
print("\nSwapping values:")
print("x is:", x) # Output: 3.14

http://www.mijanrahman.com/

2. Introduction to Python Programming

 Prof. Dr. Md. Mijanur Rahman. www.mijanrahman.com
10 10

print("y is:", y) # Output: 5

Assigning multiple variables the same value
print("\nAssigning multiple variables the same value:")
x = y = z = 10
print("x is:", x) # Output: 10
print("y is:", y) # Output: 10
print("z is:", z) # Output: 10

Assigning a value to a variable using another variable
a = 5
b = a
print("\nAssigning a value to a variable using another variable:")
print("a is:", a) # Output: 5
print("b is:", b) # Output: 5

Variable assignment in expressions
c = a + b
print("\nVariable assignment in expressions:")
print("c is:", c) # Output: 10

This script demonstrates various types of variable assignments including single assignments,

multiple assignments, swapping values, assigning the same value to multiple variables, assigning

values using other variables, and variable assignment in expressions.

http://www.mijanrahman.com/

2. Introduction to Python Programming

 Prof. Dr. Md. Mijanur Rahman. www.mijanrahman.com
11 11

Example 2.6: Demonstrating a function definition in Python

Function definition
def greet(name):
 """
 This function greets the user with the given name.

 Parameters:
 name (str): The name of the user.

 Returns:
 str: A greeting message.
 """
 return f"Hello, {name}! Welcome to our program."

Function call
user_name = input("Please enter your name: ")
greeting_message = greet(user_name)
print(greeting_message)

In this script, we define a function called greet that takes one parameter name. Inside the function,

we use an f-string to generate a greeting message with the provided name. The function returns

the greeting message. We then prompt the user to input their name. We call the greet function with

the provided user name and store the returned greeting message. Finally, we print the greeting

message to the console.

Example 2.7: Demonstrating the Main Code Structure in Python

The following is a sample program in Python that demonstrates the main code structure:

Import statements (if required)
import math

Function definitions (if required)
def calculate_circle_area(radius):
 area = math.pi * radius ** 2
 return area

Main code block
if __name__ == "__main__":
 # Code here will be executed when the script is run directly

http://www.mijanrahman.com/

2. Introduction to Python Programming

 Prof. Dr. Md. Mijanur Rahman. www.mijanrahman.com
12 12

 # Prompt the user for input
 radius = float(input("Enter the radius of the circle: "))

 # Calculate the area of the circle using the function
 area = calculate_circle_area(radius)

 # Print the result
 print("The area of the circle is:", area)

In this sample program, the ‘main code’ prompts the user for the radius of a circle, calculates the

area of the circle using the ‘calculate_circle_area()’ function, and then prints the result.

http://www.mijanrahman.com/

	2.1. Python Programming
	2.1.1 Major Features of Python

	2.2. Basic Structure of Python Program
	2.2.1 Components of Python Program

