
Prof. Dr. Md. Mijanur Rahman. www.mijanrahman.com
1

Basic Programming with Python

Prepared By:

Professor Dr. Md. Mijanur Rahman

Department of Computer Science & Engineering

Jatiya Kabi Kazi Nazrul Islam University, Bangladesh.

www.mijanrahman.com

Control Structures in Python

CONTENTS
3.3 Loop Control Statements ...1

3.3.1. Break Statement ...2

3.3.2. Continue Statement ..4

3.3.3. Pass Statement ...6

3.3 LOOP CONTROL STATEMENTS

Loop control statements in Python are special commands that allow us to alter the flow of loops.

They enable us to control the iteration process and decide when to continue, break, or skip certain

iterations within loops. Python provides three main loop control statements:

1. Break Statement: The break statement is used to exit the loop prematurely. When a break

statement is encountered inside a loop, the loop is terminated immediately, and program

control resumes at the next statement following the loop.

for i in range(5):
 if i == 3:
 break
 print(i)

http://www.mijanrahman.com/
http://www.mijanrahman.com/

3. Control Structures in Python

 Prof. Dr. Md. Mijanur Rahman. www.mijanrahman.com
2 2

In this example, the loop terminates when i becomes 3, and the program control moves to

the next statement after the loop.

2. Continue Statement: The continue statement is used to skip the rest of the code inside the

loop for the current iteration and proceed to the next iteration of the loop.

for i in range(5):
 if i == 2:
 continue
 print(i)

In this example, the loop skips printing the number 2 but continues with the next iteration to

print the remaining numbers.

3. Pass Statement: The pass statement is a null operation that does nothing. It is used when a

statement is required syntactically but you do not want to execute any code.

for i in range(5):
 if i == 2:
 pass
 else:
 print(i)

In this example, the pass statement is used to do nothing when i is 2, and the loop continues

executing for other values of i.

Loop control statements provide flexibility and control over loop execution, allowing us to handle

various scenarios and conditions within loops. They are commonly used in conjunction with

conditional statements to control the flow of the program based on specific conditions.

3.3.1. Break Statement

Python break statement is used to terminate the current loop and resumes execution at the next

statement, just like the traditional break statement in C. When encountered within a loop (such as

for or while), the break statement causes the loop to terminate immediately, and program execution

resumes at the next statement following the loop.

The break statement is typically used within loops to exit the loop based on a specific condition,

rather than completing all iterations of the loop. It is useful when we want to terminate a loop early

based on certain criteria, without needing to complete the remaining iterations.

The general syntax of the break statement is as follows:

for item in iterable:
 if condition:
 break
or

while condition:
 if condition:
 break

http://www.mijanrahman.com/

3. Control Structures in Python

 Prof. Dr. Md. Mijanur Rahman. www.mijanrahman.com
3 3

The break statement is usually placed within an if statement inside the loop. When the condition

specified with the break statement evaluates to True, the loop is terminated immediately, and

program control moves to the next statement outside the loop. If the break statement is not

encountered, the loop continues to iterate until its completion. The following flowchart illustrates

how a break statement works in a program:

An example of a break statement is given below:

Example using a for loop
for i in range(5):
 print(i)
 if i == 2:
 break

In this example, the for loop iterates over the numbers from 0 to 4. Inside the loop, each number i

is printed. When i becomes 2, the break statement is encountered, causing the loop to terminate

immediately. As a result, the loop exits after printing 0, 1, and 2, and program control moves to

the next statement after the loop.

Example 3.18: Checking for prime number using break statement in Python.

num = int(input("Enter a number: "))

for x in range(2,num):
 if num%x == 0:
 print ("{} is not prime".format(num))
 break
else:
 print ("{} is prime".format(num))

In this script, we use a for loop over numbers from 2 to the desired number-1. If it divisible by any

value of looping variable, the number is not prime, hence the program breaks from the loop. If the

http://www.mijanrahman.com/

3. Control Structures in Python

 Prof. Dr. Md. Mijanur Rahman. www.mijanrahman.com
4 4

number is not divisible by any number between 2 and x-1, the else block prints the message that

the given number is prime.

Output:

3.3.2. Continue Statement

In Python, the continue statement is used inside loops to skip the rest of the code inside the loop

for the current iteration and proceed to the next iteration of the loop. When encountered, the loop

starts next iteration without executing the remaining statements in the current iteration. Essentially,

it allows us to bypass the remaining code inside the loop block and move to the next iteration of

the loop. The continue statement is typically used within loops in conjunction with conditional

statements to selectively skip certain iterations based on specific conditions.

The continue statement can be used in both while and for loops. The general syntax of the continue

statement is as follows:

for item in iterable:
 if condition:
 continue
 # Code here will be skipped for certain iterations
or

while condition:
 if condition:
 continue
 # Code here will be skipped for certain iterations

The continue statement is usually placed within an if statement inside the loop. When the condition

specified with the continue statement evaluates to True, the rest of the code inside the loop block

for the current iteration is skipped, and program control moves to the next iteration of the loop. If

the condition is not met, the loop continues normally with the execution of the remaining code

inside the loop block.

The flowchart of the continue statement looks like:

http://www.mijanrahman.com/

3. Control Structures in Python

 Prof. Dr. Md. Mijanur Rahman. www.mijanrahman.com
5 5

The continue statement is just the opposite to that of break. It skips the remaining statements in

the current loop and starts the next iteration. For an example:

Example using a for loop
for i in range(5):
 if i == 2:
 continue
 print(i)

In this example, the for loop iterates over the numbers from 0 to 4. Inside the loop, there's an if

statement that checks if i is equal to 2. When i is 2, the continue statement is encountered, causing

the rest of the code inside the loop block for that iteration (in this case, print(i)) to be skipped. As

a result, 2 is not printed, and program control moves to the next iteration of the loop.

Example 3.19: Checking prime factors using continue statement in Python.

num = int(input("Enter a number: "))

print ("Prime factors for ", num, "are:")
d = 2
while num > 1:
 if num%d==0:
 print (d)
 num=num/d
 continue
 d=d+1

In this example, we use a continue statement to find the prime factors of a given number. To find

prime factors, we successively divide the given number starting with 2 using while loop, increment

the divisior and continue the same process till the input reduces to 1.

Output:

http://www.mijanrahman.com/

3. Control Structures in Python

 Prof. Dr. Md. Mijanur Rahman. www.mijanrahman.com
6 6

3.3.3. Pass Statement

In Python, the pass statement is a null operation that does nothing when executed. It acts as a

placeholder for syntactical correctness and is typically used when a statement is required by Python

syntax, but no action needs to be taken. The pass statement is often used as a placeholder for future

code or to create empty code blocks.

The general syntax of the pass statement is as follows:

if condition:
 pass

The pass statement is simply the keyword pass by itself. It can be used anywhere in Python where

a statement is syntactically required. When Python encounters a pass statement, it does nothing

and continues with the execution of the next statement.

The pass statement is commonly used when we want to define a code block that will be filled in

later or when we want to create a placeholder for future code. It is also useful in defining empty

function or class definitions.

Example uses of the pass statement:

 Placeholder in an if statement:

if condition:
 pass # Placeholder for future code
else:
 Code-block

 Empty function definition:

def my_function():
 pass # Empty function body

 Placeholder in a class definition:

class MyClass:
 def my_method(self):
 pass # Placeholder for method implementation

Example 3.20: Illustration of the usage of pass statement in Python.

for letter in 'Nazrul-University':
 if letter == '-':

http://www.mijanrahman.com/

3. Control Structures in Python

 Prof. Dr. Md. Mijanur Rahman. www.mijanrahman.com
7 7

 pass
 print ('Pass a character')
 else:
 print ('Current Letter:', letter)

Output:

http://www.mijanrahman.com/

	3.3 Loop Control Statements
	3.3.1. Break Statement
	3.3.2. Continue Statement
	3.3.3. Pass Statement

