CSE 06131223 4 CSE 06131224

Structured Programming

Lecture 9
Decision Making and Branching in C (2)

Prepared by
Ql=]0) Md. Mijanur Rahman, Prof. Dr.
X Dept. of Computer Science and Engineering
I . Jatiya Kabi Kazi Nazrul Islam University, Bangladesh

@ =1 www.mijanrahman.com

http://www.mijanrahman.com/

C

Contents

DECISION MAKING AND BRANCHING IN C

Conditional Control Structures

Selection Statements

if statement

if..else statements
nested if statements
if-else-if ladder
switch statements

Jump Statements:
break
continue
goto
return

C

-4

Switch Statement

The switch statement in Cis an alternate to if-else-if ladder statement which allows us to

execute multiple operations for the different possible values of a single variable called
switch variable.

Here, We can define various statements in the multiple cases for the different values of
a single variable.

Thus, a switch statement allows a variable to be tested for equality against a list of

values. Each value is called a case, and the variable being switched on is checked for
each switch case.

Switch Statement

Syntax:

The syntax for a switch statement in C programming language is as follows -

switch(expression) {

case constant-expression
statement(s);
break; /* optional */

case constant-expression
statement(s);
break; /* optional */

/* you can have any number of case statements */
default : /* Optional */
statement(s);

Switch Statement

The following rules apply to a switch statement -

The expression used in a switch statement must have an integral or enumerated type, or be of a class type in which the class has a
single conversion function to an integral or enumerated type.

You can have any number of case statements within a switch. Each case is followed by the value to be compared to and a colon.
The constant-expression for a case must be the same data type as the variable in the switch, and it must be a constant or a literal.

When the variable being switched on is equal to a case, the statements following that case will execute until a break statement is
reached.

When a break statement is reached, the switch terminates, and the flow of control jumps to the next line following the switch
statement.

Not every case needs to contain a break. If no break appears, the flow of control will fall through to subsequent cases until a break is
reached.

A switch statement can have an optional default case, which must appear at the end of the switch. The default case can be used for
performing a task when none of the cases is true. No break is needed in the default case.

Fig: Switch Statement

EXpression

Switch Statement

* Flow Diagram: Matched

Statement-1 . break LT

Unmatched

Matched

Matched

Unmatched

default Statement-s

Decision Making and Branching in C

Switch Statement

Example:

Enter the day no

Output:

(1-7): 6
Thursday

O J o U b w D

N L T e e e e e
O W wW-Jo U WN K O -

21.
22.
23.
24.
25.
26.
27.
284
29.
30.
31.
32.
33.
34.

int main ()
{
int day;
printf ("Enter the day no (1-7)
scanf (“sd”, &day);
switch (day)
{
case 1:
printf ("Saturday") ;
break;
case 2:
printf ("Sunday") ;
break;
case 3:
printf (“Monday") ;
break;
case 4:
printf ("Tuesday") ;
break;
case 5:
printf ("Wednesday") ;
break;
case 6:
printf ("Thursday") ;
break;
case 7:
printf (“Friday") ;
break;
default:
printf (“Invalid input!");
break;
}

return 0;

}

) 5

Jump Statement

These statements are used in C or C++ for the unconditional flow of control

throughout the functions in a program.

They support four types of jump statements:

Break
Continue
Goto

Return

Break Statement

The break statement in C programming has the following two usages -

This loop control statement is used to terminate the loop. When a break statement is encountered
inside a loop, the loop is immediately terminated and the program control resumes at the next
statement following the loop.

It can be used to terminate a case in the switch statement.

If you are using nested loops, the break statement will stop the execution of the
innermost loop and start executing the next line of code after the block.

Syntax:

The syntax for a break statementin Cis as follows -

break;

Break Statement

Flow Diagram:

conditional

code

If condition
is true

condition

If condition
is false

-

Break Statement

Example:

When the above code is compiled and
executed, it produces the following result -

value
value
value
value
value
value

of
of
of
of
of
of

(o S R I o D B « VA o) RS o V)

10

Sl

12

S

14

i B

#include <stdio.h>

int main () {

/* local variable definition */
int a = 18;

/* while loop execution */
while(a < 20) {

printf("value of a: %d\n", a);
a++;

if(a > 15) {

/* terminate the loop using break statement */
break;

return @;

Continue Statement

The continue statement in C programming works somewhat like the break statement.
Instead of forcing termination, it forces the next iteration of the loop to take place,
skipping any code in between.

For the for loop, continue statement causes the conditional test and increment portions of the
loop to execute.

For the while and do...while loops, continue statement causes the program control to pass to the
conditional tests.

Syntax:

The syntax for a continue statementin Cis as follows -

continue;

Continue Statement

Flow Diagram:

conditional
code

If condition continue
is true

condition

If condition
is false

Continue Statement

Example:

When the above code is compiled and
executed, it produces the following result -

value
value
value
value
value
value
value
value
value

of
of
of
of
of
of
of
of
of

[N T IR « DA o AU « R « DI « A « DR o}

: 10
< |
¥ 32
< B
. 14
: 16
: 17
: 18
: 19

#include <stdio.h>

int main () {

/* local variable definition */
int a = 10;

/* do loop execution */
do {

if(@ ==15) H
/* skip the iteration */

a=a+1;
continue;

printf("value of a: %d\n", a);
a++;

} while(a < 20);

return 9;

Goto Statement

The goto statement is known as jump statement in C. As the name suggests, goto is used to transfer the

program control to a predefined label. The goto statement can be used to repeat some part of the code
for a particular condition.

It can also be used to break the multiple loops which can't be done by using a single break statement.
However, using goto is avoided these days since it makes the program less readable and complicated.

Syntax:

The syntax for a goto statement in Cis as follows -

goto label;

label: statement;

Here label can be any plain text except C keyword and it can be set anywhere in the C program above or below to goto statement.

Goto Statement

Flow Diagram:

label 1 statement 1

go to
label 3

label 2 statement 2

label 3 statement 3

#include <stdio.h>

int main () {

GOtO Statement /* local variable definition */

int a = 10;
Example:
P /* do loop execution */
LOOP:do {
When the above code is compiled and if(a == 15) {
: : * ski ‘ ion *
executed, it produces the following result - fi= B P Ehe A teration of
a=a+1;
value of a: 10 goto LOOP;
value of a: 11 }
value of a: 12
value of a: 13 printf("value of a: %d\n", a);
value of a: 14 a++;
value of a: 16
value of a: 17 while(a < 20);
value of a: 18
value of a: 19

return 9;

Return Statement

The return in C or C++ returns the flow of the execution to the function from where it
is called. This statement does not mandatorily need any conditional statements.

As soon as the statement is executed, the flow of the program stops immediately and
return the control from where it was called.

The return statement may or may not return anything for a void function, but for a
non-void function, a return value is must be returned.

Syntax:

The syntax for a return statement in C is as follows -

return [expression];

#include <stdio.h>

// non-void return type
// function to calculate sum
int SUM(int a, int b)

Return Statement % ik 8

return sl;

Example: }

// returns void

// function to print

void Print(int s2)

{
printf("The sum is %d", s2);
return;

. , _ N —
When the above code is compiled and executed, it produces int: main{)

he followi | {
the following result - int numl = 10;
. int num2 = 10;
The sum is 20 int sum_of = SUM(numl, num2);
Print(sum_of);
return 9;

