
Structured Programming

Lecture 15
Functions in C (2)

Prepared by________________________________

Md. Mijanur Rahman, Prof. Dr.
Dept. of Computer Science and Engineering

Jatiya Kabi Kazi Nazrul Islam University, Bangladesh
www.mijanrahman.com

CSE 06131223  CSE 06131224

http://www.mijanrahman.com/

Contents
F U N C T I O N S I N C

• Top-Down Modular Programming using Functions
• Functions in C
• Why do we need function?
• Types of Functions
• Elements of User-defined Function
• Function Definition

Functions in C 2

• Function Declaration
• Function Calling
• Category of Functions
• Parameters passing to Functions
• Main Function
• Library Functions

Function Declarations
• Like variables, all function in a C program must be declared, before they invoked. A

function declaration, also known as function prototype, consists of four parts, such as-

• Function Type (Return Type)

• Function Name

• Parameter List

• Terminating Semicolon (;)

Functions in C 3

Function Declarations
• A function declaration tells the compiler about a function name and how to call the function. The

actual body of the function can be defined separately.

• A function declaration has the following parts:
return-type function-name(parameter list);

• For example:
int max(int num1, int num2);

• Parameter names are not important in function declaration only their type is required, so the
following is also a valid declaration:

int max(int, int);

• Function declaration is required when you define a function in one source file and you call
that function in another file. In such case, you should declare the function at the top of the file
calling the function.

Functions in C 4

Function Declarations
• A few acceptable forms of function declaration are:

int max(int, int);

max(int a, int b);

max(int, int);

• When a function does not take any parameter and does not return any value, its

prototype is written as:

void display(void);

Functions in C 5

Function Calls
• While creating a C function, you give a

definition of what the function has to do.

• To use a function, you will have to call that
function to perform the defined task.

• When a program calls a function, the program
control is transferred to the called function.

• A called function performs a defined task
and when its return statement is executed or
when its function-ending closing brace is
reached, it returns the program control back
to the main program.

Functions in C 6

• For Example:

int max(int x, int y)

{

}

int main()

{

int a, b;

max(a,b); //function calling

}

Function Calls
• There are many different ways to call a function. Listed below are some of the ways the

function mul can be invoked:

mul(10, 5)

mul(m, 5)

mul(10, n)

mul(m, n)

mul(m+5, 10)

mul(10, mul(m, n))

mul(exp1, exp2)

•

Functions in C 7

Function Calls
• A function which returns a value can be used in expressions like any other variable. Each of

the following statements is valid:

printf(“%d\n”,mul(a, b);

y = mul(a, b) / (a+b);

if (mul(a, b)>total)

print(“large”);

• However, a function cannot be used on the right side of an assignment statement. For
instance,

mul(a, b) = 15; is invalid.

Functions in C 8

Function Calls
• To call a function, we simply need to pass the

required parameters along with the function
name, and if the function returns a value,
then we can store the returned value.

• Example:

• Write a C Program To Swap Two Numbers
using Function.

Functions in C 9

//function calling

//function declaration

//function definition

Category of Functions
• A function, depending on whether arguments (or parameters) are present or not and

whether a value is returned or not, may belong to one of the following categories:

• Category 1: Functions with no arguments and no return values.

• Category 2: Functions with arguments and no return values.

• Category 3: Functions with arguments and one return value.

• Category 4: Functions with no arguments, but return a value.

• Category 5: Functions that return multiple values.

Functions in C 10

Category of Functions
• Category 1: Functions with no arguments

and no return values.

• In C, we can define functions that don't

take any arguments and don't return any

value. Such functions are commonly used

for tasks that don't require input

parameters or for performing actions

without needing to produce any specific

result.

Functions in C 11

For example:

Category of Functions
• Category 2: Functions with arguments

and no return values.

• In C, we can define functions that accept

arguments (also called parameters) but

don't return any value. These functions

are used when we need to perform some

actions or operations on the provided

arguments without needing to produce a

specific result.

Functions in C 12

Here's an example:

Category of Functions
• Category 3: Functions with arguments

and one return value.

• In C programming, functions can have

arguments (parameters) and can also

return a single value. This allows you to

pass data into the function, perform

some operations on that data, and then

return a result back to the calling code.

Functions in C 13

Here's an example:

Category of Functions
• Category 4: Functions with no arguments,

but return a value.

• In C programming, functions can be

defined without any arguments but can

still return a value. This allows you to

perform some computation or task

within the function and then return a

result to the calling code.

Functions in C 14

Here's an example:

Category of Functions
• Category 5: Functions that return multiple values.

• In C, functions inherently return only one value. However, we can simulate the

concept of returning multiple values by using pointers or structures.

• Two common approaches to achieve this:

• Using Pointers: Pass pointers to variables to the function, which will modify the

values stored at those memory locations.

• Using Structures: Define a structure that holds multiple values, and return an

instance of that structure from the function.

Functions in C 15

Category of Functions
• Category 5: Functions that return

multiple values.

• Using Pointers: Pass pointers to

variables to the function

Functions in C 16

Here's an example:

Category of Functions
• Category 5: Functions that return

multiple values.

• Using Structures: Define a

structure that holds multiple

values, and return an instance of

that structure from the function.

Functions in C 17

Here's an example:

Example:

• Function with Array Parameters:

• This C program uses a function

that takes an array of numbers as

a parameter, calculates the sum

and average of those numbers,

and returns the results using

pointers.

Functions in C 18

Here's an example:

Example:

• Function with Parameters and

return:

• This C program uses a function

that calculates the principal

amount after a period of time:

A = P (1+r/100)t

Functions in C 19

Here's an example:

Functions in C 20

?THE END

