
Structured Programming

Lecture 17
Structures and Unions (1)

Prepared by________________________________

Md. Mijanur Rahman, Prof. Dr.
Dept. of Computer Science and Engineering

Jatiya Kabi Kazi Nazrul Islam University, Bangladesh
www.mijanrahman.com

CSE 06131223  CSE 06131224

http://www.mijanrahman.com/


Contents
S t r u c t u r e s  a n d  U n i o n s  i n  C

• What is Structure?
• Arrays vs. Structures
• Defining Structure
• Declaring Structure Variables
• Accessing Structure Members
• Structure Initialization
• Operations on Individual Members
• Array of Structures
• Structures and Functions
• Unions

Structures and Unions in C 2



What is Structure?
• In C, there are cases where we need to store multiple attributes of an entity. It is not necessary

that an entity has all the information of one type only. It can have different attributes of
different data types.

• For example, an entity Student may have its name (string), roll number (int), marks (float). To
store such type of information regarding an entity student, we have the following approaches:

1. Construct individual arrays for storing names, roll numbers, and marks.

2. Use a special data structure to store the collection of different data types.

• C provides us with an additional and simpler approach where we can use a special data
structure, i.e., structure, in which, we can group all the information of different data type
regarding an entity.

Structures and Unions in C 3



What is Structure?
• In C programming, a structure is a user-defined data type that allows us to group

together different types of variables under a single name.

• It enables us to create complex data structures to represent entities with multiple
attributes.

• Structure in C is a user-defined data type that enables us to store the collection of
different data types.

• Each element of a structure is called a member. Structures simulate the use of classes
and templates as it can store various information

Structures and Unions in C 4



Arrays vs. Structures
• Arrays and structures are both fundamental data structures in C, but they serve

different purposes and have distinct characteristics.
• Here's a comparison between arrays and structures:
• Purpose:

• Arrays: Arrays are used to store a collection of elements of the same data type in contiguous memory 
locations. They are suitable for representing homogeneous data, such as a list of integers, characters, 
or floating-point numbers.

• Structures: Structures are used to group together elements of different data types under a single 
name. They are suitable for representing heterogeneous data, such as a person's name, age, and 
address.

• Data Type:
• Arrays: Elements of an array must be of the same data type.
• Structures: Elements of a structure can be of different data types.

Structures and Unions in C 5



Arrays vs. Structures
• Memory Allocation:

• Arrays: Elements of an array are stored in contiguous memory locations.

• Structures: Members of a structure are stored in separate memory locations. The structure itself occupies memory equal to 
the sum of sizes of its members, possibly with some padding for alignment.

• Accessing Elements:
• Arrays: Elements of an array are accessed using indices.

• Structures: Members of a structure are accessed using dot (.) operator or arrow (->) operator (if accessing through a pointer).

• Flexibility:
• Arrays: Arrays offer less flexibility because all elements must be of the same type and size.

• Structures: Structures offer more flexibility as they can contain elements of different types and sizes.

• Usage:
• Arrays: Useful for storing sequences of data, such as lists, matrices, or buffers.

• Structures: Useful for representing complex entities or records, such as employees, students, or any object with multiple 
attributes.

Structures and Unions in C 6



Defining a Structure
• The struct keyword is used to define the structure. The syntax to define the structure in C:

struct structure_name {

data_type member1;

data_type member2;

// more members if needed

};

The components:

• struct: This is a keyword used to define a structure in C.

• structure_name: This is the name you give to your structure. It follows the same naming rules as variables.

• {}: These curly braces enclose the members of the structure.

• data_type member1;, data_type member2;, etc.: These are the members of the structure. Each member has a data 
type (like int, float, char, etc.) and a name.

Structures and Unions in C 7



Defining a Structure
• Let's see this example to define a structure for an entity employee in C:

struct employee
{ int id;

char name[20];
float salary;

};

Structures and Unions in C 8

This figure shows the memory
allocation of the structure employee
that is defined in the above example:



Defining a Structure
• Here, struct is the keyword; employee is the name of the structure; id, name,

and salary are the members or fields of the structure. Let's understand it by the diagram
given below:

Structures and Unions in C 9



Declaring Structure Variable

• After defining a structure, we can declare variables of that type. A structure variable
declaration is similar to the declaration of variable of any data types.

• It includes the following elements:

1. The keyword struct

2. The structure tag name

3. List of variable names separated by commas

4. A terminating semicolon

Structures and Unions in C 10



Declaring Structure Variable
• The general syntax of structure variable declaration:

Struct structure-name variable-name;

Where:
• struct is the keyword used to declare a structure.
• structure_name is the name of the structure type.
• variable_name is the name you give to the structure variable.

// Define a structure called Person 
struct Person { 

char name[50]; 
int age; 
float height; 

};

For example, a structure variable can be declared as:
struct Person person1;

Structures and Unions in C 11



Declaring Structure Variable
// Define a structure called Person 
struct Person { 

char name[50]; 
int age; 
float height; 

};

For example, a structure variable can be declared as:
struct Person person1;

• In this example, struct Person declares a structure type named Person. Then, within the main

function, struct Person person1; declares a structure variable named person1 of type Person.

Structures and Unions in C 12



Declaring Structure Variable

Ways of Declaring structure variable in C: 
In C, we have several ways to declare structure variables, depending on the coding style 
and requirements. 

Following are the common ways of declaring structure variables:

1. Using struct keyword followed by variable name: This is the most basic way 

to declare a structure variable.

struct Person person1;

Structures and Unions in C 13



Declaring Structure Variable
Ways of Declaring structure variable in C:
2. Using typedef with struct: This method allows us to create an alias for the structure type, making 
the declaration more concise.

typedef struct { 
char name[50]; 
int age; 
float height; 

} Person; Person person1;

3. Separate declaration and definition: We can declare the structure separately using struct keyword 
and then define the structure variable later.

struct Person { 
char name[50]; 
int age; 
float height; 

}; struct Person person1;

Structures and Unions in C 14



Declaring Structure Variable
Ways of Declaring structure variable in C:

4. Inline initialization: You can declare and initialize the structure variable in a single line.
struct Person { 

char name[50]; 
int age; 
float height; 

} person1 = {"John", 30, 6.0};

5. Declare variable at the time of defining the structure.
Struct Person { 

char name[50]; 
int age; 
float height; 

} person1, person2;

Structures and Unions in C 15



Declaring Structure Variable

Ways of Declaring structure variable in C:

6. Using pointers: You can declare a pointer to a structure and allocate memory dynamically using 

malloc().
struct Person { 

char name[50]; 
int age; 
float height; 

}; 
struct Person *person_ptr; 
person_ptr = (struct Person *)malloc(sizeof(struct Person));

Structures and Unions in C 16



Accessing Structure Members
• In C, we can access the members of a structure using the dot (.) operator or the arrow (->) operator if we 

are working with pointers to structures. 

1. Using Dot Operator (for structure variables): When we have a structure variable, we can access its 
members using the dot (.) operator:

strcpy(person1.name, "John"); 

person1.age = 30; 

person1.height = 6.0;

2.Using Arrow Operator (for pointers to structures): When we have a pointer to a structure, we can access 
its members using the arrow (->) operator:

strcpy(person_ptr->name, "John"); 

person_ptr->age = 30; 

person_ptr->height = 6.0;

Structures and Unions in C 17



Example:
An example to illustrate how we declare a 
structure variable:

Using Dot Operator 
(for structure variables):

Structures and Unions in C 18



Example:
An example to illustrate how we declare a 
structure variable:

Using Arrow Operator 
(for pointers to structures):

Structures and Unions in C 19



Structures and Unions in C 20

?THE END


