
1

Lecture 2

Introduction (1)Md. Mijanur Rahman, Prof. Dr.

Dept. of Computer Science and Engineering, 

Jatiya Kabi Kazi Nazrul Islam University, Bangladesh.

www.mijanrahman.com

CSE 305

http://www.mijanrahman.com/


22

 What is the “Theory of Computation”?

 History: Theory of Computation

 Branches of the Theory of Computation

 Automata Theory, and Formal Language

 Overview of Finite Automata, Context-free Grammars, Pushdown Automata, and Turing Machines

 Computability Theory, Complexity Theory, and Models of Computation

 Applications of Theory of computation

2

Contents
Introduction



33

Why study Theory of computation (ToC)

• The major reasons about the importance to study of theory of computation are listed below:

o The importance to study the theory of computation is to better understand the

development of formal mathematical models of computation that reflect the real-world

of computer.

o To achieve deep understanding about the mathematical properties of computer

hardware and software.

o To understand mathematical definitions of the computation and the algorithms.

o To rectify the limitations of computers and answer what kind of problems can be

computed.



4

What is the “Theory of Computation”?

• Real-world computers perform computations that by nature run like mathematical models to

solve problems in systematic ways.

• The essence of the theory of computation is to help develop mathematical and logical models

that run efficiently and to the point of halting. Since all machines that implement logic apply

TOC, studying TOC gives learners an insight into computer hardware and software

limitations.

• Computation is the movement and alteration which occurs during the transition of data or the

processing of data based on a set of operations. The theory of computation includes the

fundamental mathematical properties of computer hardware, software and their

applications.

• It is a computer science branch which deals with how a problem can be solved efficiently by

using an algorithm on a model of computation.



5

What is the “Theory of Computation”?

• The Theory of Computation rests on the fact that computers can’t solve all problems. A given

machine would have limitations, and the Theory of Computation aims to discover these. The

computational model is given inputs and decides whether or not it can process the information

using the developed algorithm.

• For example, you can create a machine and design it so that it only accepts red objects. The

algorithm is pretty straightforward, as represented by the image below. The red square is

accepted, and the model rejects the yellow square.

•



6

What is the “Theory of Computation”?

• The Theory of Computation can also help determine if a model needs improvement. In the

earlier example, the developer may want to introduce other inputs to see how the model treats

them.

• What happens when a red square with a yellow border is introduced to the machine? How about

when the border is red, but the inside of the object is yellow?



7

What is the “Theory of Computation”?

• Key considerations of computational problems

• What can and cannot be computed.

• Speed of such computations.

• The amount of memory in use during such computations.

• The theory of computation forms the basis for:

• Writing efficient algorithms that run in computing devices.

• Programming language research and their development.

• Efficient compiler design and construction.

• Three main areas: automata, computability, and complexity



88

History: Theory of Computation

• The theory of computation can be considered the creation of models of all kinds in the field of computer

science. Therefore, mathematics and logic are used. In the last century it became an independent

academic discipline and was separated from mathematics.

• Some pioneers of the theory of computation were Ramon Llull (Computation theory), Alonzo Church

(mathematical logic and theoretical computer science), Kurt Gödel (mathematical logic and proof

theory), Alan Turing (Turing machines), Stephen Kleene (regular expressions), Rózsa Péter, John von

Neumann, Claude Shannon, Warren McCulloch and Walter Pitts (finite automata), Noam Chomsky

(Chomsky hierarchy and formal language), Marcel-Paul Schützenberger (Formal language), Michael

O. Rabin and Dana Scott (nondeterministic finite automata), Juris Hartmantis and Richard Stearns

(time and space complexity), Stephen Cook and Richard Karp (NP-complete problems).



99

History: Theory of Computation

• Ramon Llull (Computation theory)

• Alonzo Church (mathematical logic and theoretical computer science)



1010

History: Theory of Computation

• Kurt Gödel (mathematical logic and proof theory)

• Alan Turing (Turing machines)



1111

History: Theory of Computation

• Stephen Kleene (regular expressions)

• Rózsa Péter (finite automata)



1212

History: Theory of Computation

• John von Neumann

• Claude Shannon (finite automata)



1313

History: Theory of Computation

• Warren McCulloch and Walter Pitts (finite automata)



1414

History: Theory of Computation

• Noam Chomsky (Chomsky hierarchy and formal language)

• Marcel-Paul Schützenberger (Formal language)



1515

History: Theory of Computation

• Michael O. Rabin and Dana Scott (nondeterministic finite automata)



1616

History: Theory of Computation

• Juris Hartmantis and Richard Stearns (time and space complexity)



1717

History: Theory of Computation

• Stephen Cook and Richard Karp (NP-complete problems).



1818

History: Theory of Computation

• The theory of abstract automata was developed in the mid-20th century in connection with finite

automata. Automata theory was initially considered a branch of mathematical systems theory, studying

the behavior of discrete-parameter systems.

• Before 1930’s:

• Alan Turing Studied an abstract machine that had all the capabilities of today’s computers to solve

problems. A. Turing’s goal was to describe precisely that boundary between what a computing

machines could do and what it could not do.

• In the year 1936 Alan Turing invented Turing machine, and proved that there exists an unsolvable

problem.

• 1931’s to 1950’s:

• Simpler kinds of machines were used which we called ‘Finite Automata’. These automata originally

proposed to model brain function, turned out to be extremely useful for a variety of other purposes

like designing software’s to checking the behavior of digital circuit used in computers etc.

• In the 1940's the stored-program computers were built.



1919

History: Theory of Computation

• Late 1950’s to 1960’s:

• N. Chomsky began the study of formal ‘grammars’ that are not strictly belongs to the machines, but these

grammars have closer relationships to abstracts automata.

• In the year 1956 Kleene invented regular expressions and proved equivalence of regular expression or limited

automata. Also, in this year, Chomsky described Chomsky hierarchy, which organized the languages recognized

by the different automata into the hierarchical classes.

• In the 1959 Rabin and Scott introduced nondeterministic finite automata and proved its equivalence to finite

automata.

• 1950's-1960's more works on grammars, languages, and compilers. In present world these grammars serves as

the basis of some important software components, including parts of compilers.

• After 1960’s:

• In the year 1965 Hartmantis and Stearns defined time complexity, and Lewis, Hartmantis and Stearns

defined space complexity. In the year 1971 Cook showed the 1st NP-complete problem,

the satisfiability problem. In the year 1972 Karp Showed many other NP-complete problems.

• The theory of computational complexity also took shape in the 1960s. By the end of the decade, automata theory

came to be seen as "the pure mathematics of computer science".



2020

Branches of the Theory of Computation

• Three main branches of theories make up what the Theory of Computation is. These are:

• Automata Theory and Language: Refers to the analysis of how machines work to solve a

problem.

• Computability Theory: Pertains to determining which problems a machine can solve and

which ones it can’t.

• Computational Complexity Theory: Addresses the issue of the efficiency of the machine

when solving a problem.

• One of the most famous inventions that embody these concepts is the Turing machine created

by Alan Turing in the 1930s. The idea is that a Turing machine can run any problem that

algorithms can solve. In reverse, anything that an algorithm can’t do can’t be done by a Turing

machine.



2121

?THE END

21


