
1

Lecture 9

Mathematical Preliminaries (5)
Md. Mijanur Rahman, Prof. Dr.

Dept. of Computer Science and Engineering, Jatiya Kabi Kazi Nazrul Islam University, Bangladesh.

www.mijanrahman.com

CSE 305

http://www.mijanrahman.com/


22

 Set Theory

 Sequences and Tuples

 Relations and Functions

 Alphabets, Strings and Languages

 Graph and Tree

 Mathematical Logic

2

Contents
Mathematical Preliminaries



33

Alphabets, Strings and Languages

3

• Alphabets: The alphabet of any language is defined as a finite, non-empty set of symbols.
These form the basic units of strings. Alphabets may be denoted by .

• Some examples of alphabets include: binary alphabets,  = {0, 1}; English alphabets,  = {A, B,
C, .., Z}, numbers,  = {0, 1, 2, …, 9}, etc.

• Strings: The symbols from an alphabet can be combined to form words or strings. A string
is defined as a finite sequence of symbols chosen from some alphabets over .

• For example: (i) 01, 011, 0000, 101011 are all strings over an alphabet  = {0, 1}; (ii) aa, ac, abc,
aabb are all strings over an alphabet  = {a, b, c}; (iii) 10, 123, 1024 are all strings over an
alphabet  = {0, 1, 2, 3, …, 9}.



44

Alphabets, Strings and Languages

Languages:

• The finite or infinite set of all strings obtained from the alphabet  is called language. A language is a 

subset of *, and defined as-

L = {w * | w is a string over  and has some specific property}

• Example: 

(i) L1 = {0, 00, 101, 1100} is a language over the alphabet ={0, 1}; 

(ii) L2 = {wwR | w{a, b}*} is a language over the alphabet  = {a, b}.



55

Alphabets, Strings and Languages

Operations on Languages:

• Union of Languages: The union of languages is similar to the union of sets. The union of two languages 

is defined as-

L1  L2 = {x | x L1 or x L2}

• Intersection of Languages: The intersection of languages is similar to the intersection of sets. The 

intersection of two languages is defined as-

L1  L2 = {x | x L1 and x L2}

• Concatenation of Languages: Concatenation of languages involves grouping all possible strings formed 

by combining strings of two different languages. Concatenation of two languages is defined as-

L1 L2 = {xy | x L1 and y L2}



66

Alphabets, Strings and Languages

Operations on Languages:

• Reversal of Languages: The reversal of a language L is denoted by LR and it is defined as-

LR = {x | xR L}

Reversal of a language L is defined as a collection of reversal of all strings of L.

• Kleene Star (Kleene Closure): The Kleene star of a language L is defined as the laaguage L* consisting 

of all the strings obtained by concatenating any finite number (including zero) of strings from L together. 

For example, the Kleene star of a language L given by {0, 1} may be written as L* = {, 0, 1, 10, 

00, 01, 11, 100, 110, 101, …}



77

Graphs

7

 A graph is a pictorial representation of a set of objects
where some pairs of objects are connected by links. The
interconnected objects are represented by points termed
as vertices, and the links that connect the vertices are
called edges.

 Formally, a graph G is a pair of sets (V, E), where V is the set
of vertices and E is the set of edges, connecting the pairs of
vertices, such as G = (V, E):

1. A set V of elements called nodes (or points or vertices)

2. A set E of edges, such that each edge e in E is identified with a unique
(unordered) pair [u, v] of nodes in V, denoted by e = [u, v]; the nodes
u and v are called endpoints of e, and u and v are said to be adjacent
nodes or neighbors.

 In the given graph:

V = {a, b, c, d, e}

E = {ab, ac, bd, cd, de}



8

Graphs

Graph Terminology:

• Vertex − Each node of the graph is represented as a vertex. In the

example, the labeled circle represents vertices. Thus, A to G are vertices.

• Edge − Edge represents a path between two vertices or a line between

two vertices. In the example, the lines from A to B, B to C, and so on

represents edges.

• Adjacency − Two node or vertices are adjacent if they are connected to

each other through an edge. In the example, B is adjacent to A, C is

adjacent to B, and so on.

• Path − Path represents a sequence of edges between the two vertices. In

the example, ABCD represents a path from A to D.



9

Graphs

Graph Terminology:

• Closed Path - A path will be called as closed path if the initial node is

same as terminal node. A path will be closed path if V0=VN.

• Simple Path and Euler Path - If all the nodes of the graph are distinct

with an exception V0=VN, then such path P is called as closed simple

path. A path is called an Euler path if it traverses each edge lying in it

exactly once. A path is called an Euler circuit if it traverses each edge

lying in it exactly once and whose initial and final vertices are the same.

• Cycle - A cycle can be defined as the path which has no repeated edges

or vertices except the first and last vertices.



10

Graphs

Graph Terminology:

• Loop - An edge that is associated with the similar end points

can be called as Loop.

• Adjacent Nodes - If two nodes u and v are connected via an

edge e, then the nodes u and v are called as neighbours or

adjacent nodes.

• Degree of the Node - A degree of a node is the number of edges

that are connected with that node. A node with degree 0 is called

as isolated node.



11

Graphs

Types of Graphs:

• Connected Graph - A connected graph is the one in which

some path exists between every two vertices (u, v) in V. There

are no isolated nodes in connected graph.

• Complete Graph - A complete graph is the one in which every

node is connected with all other nodes. A complete graph

contain n(n-1)/2 edges where n is the number of nodes in the

graph.



12

Graphs

Types of Graphs:

• Weighted Graph - In a weighted graph, each edge is assigned

with some data such as length or weight. The weight of an edge

e can be given as w(e) which must be a positive (+) value

indicating the cost of traversing the edge.

• Digraph - A digraph is a directed graph in which each edge of

the graph is associated with some direction and the traversing

can be done only in the specified direction.



13

Graphs

Types of Graphs:

• Bipartite Graph - A graph G = (V, E) is called a bipartite graph

(also known as a biograph) if its vertices can be decomposed

into two disjoint sets such that no two graph vertices within the

same set are adjacent. A bipartite graph is a special case of a k-

partite graph with .

• Complete Bipartite Graph - A graph G = (V, E) is called a

complete bipartite graph if its vertices V can be partitioned into

two subsets V1 and V2 such that each vertex of V1 is connected

to each vertex of V2. The number of edges in a complete

bipartite graph is m*n, as each of the m vertices is connected to

each of the n vertices.



1414

Trees

14

 Tree is mainly used to represent data containing a hierarchical relationship between
nodes/elements, connected by edges. Tree is a special kind of graph that does not contain
any cycle/loop. A tree can also be defined as a non-empty, finite set of elements/nodes,
which posses the following properties:

1. There is a special node called the root node of the tree. The root has no incoming
edges.

2. The remaining nodes of the tree form an ordered pair of disjoint sub-trees, if it is a
binary tree.

3. There is exactly one path from the root to every other node in the tree.

4. The nodes that do not have any outgoing edges are called leaves of the tree.



15

Trees

Tree Terminology:

o Path − Path refers to the sequence of nodes along the edges of a tree.

o Root − The node at the top of the tree is called root. There is only one root per tree and

one path from the root node to any node.

o Parent − Any node except the root node has one edge upward to a node called parent.

o Child − The node below a given node connected by its edge downward is called its child

node.

o Sibling - The nodes that have the same parent are known as siblings.

o Leaf − The node which does not have any child node is called the leaf node.



16

Trees

Tree Terminology:

o Internal nodes: A node has at least one child node known as an internal

o Subtree − Subtree represents the descendants of a node.

o Ancestor node: An ancestor of a node is any predecessor node on a path from the root to

that node. The root node doesn't have any ancestors.

o Descendant: The immediate successor of the given node is known as a descendant of a

node.

o Visiting: Visiting refers to checking the value of a node when control is on the node.



17

Trees

Tree Terminology:

o Traversing − Traversing means passing through nodes in a specific order.

o keys − Key represents a value of a node based on which a search operation is to be carried

out for a node.

o Levels − Level of a node represents the generation of a node. If the root node is at level 0,

then its next child node is at level 1, its grandchild is at level 2, and so on.



18

Trees

Types of Trees:

 General Tree: A tree where a node can has any number of

children/descendants is called a general tree. A node can have

either 0 or maximum n number of nodes.

• Binary Tree: In a binary tree, each node in a tree can have

utmost two child nodes. Here, utmost means whether the node

has 0 nodes, 1 node or 2 nodes.

• Complete Binary Tree: A binary tree is said to be complete, if

all its levels, except possibly the last have the maximum

number of possible nodes, and if all the nodes at the last level

appear as far left as possible.

General tree

Binary tree

Complete Binary tree



19

Trees

Types of Trees:

 Binary Search Tree: Every node in the left subtree

must contain a value less than the value of the root

node, and the value of each node in the right subtree

must be bigger than the value of the root node.

 Spanning Tree: A spanning tree is a subset of Graph

G, which has all the vertices covered with minimum

possible number of edges. Hence, a spanning tree does

not have cycles and it cannot be disconnected..

Binary search tree



2020

?THE END

20


