
Structured Programming

Lecture 18
Structures and Unions (2)

Prepared by________________________________

Md. Mijanur Rahman, Prof. Dr.
Dept. of Computer Science and Engineering

Jatiya Kabi Kazi Nazrul Islam University, Bangladesh
www.mijanrahman.com

CSE 06131223  CSE 06131224

http://www.mijanrahman.com/


Contents
S t r u c t u r e s  a n d  U n i o n s  i n  C

• What is Structure?
• Arrays vs. Structures
• Defining Structure
• Declaring Structure Variables
• Accessing Structure Members
• Structure Initialization
• Operations on Individual Members
• Array of Structures
• Structures and Functions
• Unions

Structures and Unions in C 2



Structure Initialization
• In C, like any other data type, a structure variable can be initialized at compile time. For example:

int main(){

struct {

int weight;

float height;

}

student = {60, 180.75};

:

}

• This assigns the value 60 to student.weight and 180.75 to student.height. There is one-to-one
correspondence between the members and their initializing values.

Structures and Unions in C 3



Structure Initialization
• A lot of variation is possible in initializing a structures.
2. The following statements initialize two structure variables. Here, it is essential to use a tag
name.

int main(){
struct record{

int weight;
float height;
}

struct record student1 = {60, 180.75};
struct record student2 = {55, 170.55};
:

}

Structures and Unions in C 4



Structure Initialization
3. Another method is to initialize a structure variable outside the function. For example:

struct record{

int weight;

float height;

} student1 = {60, 180.75};

int main(){

struct record student2 = {55, 170.55};

:

}

Structures and Unions in C 5



Structure Initialization
• The compile-time initialization of a structure must have the following elements:

Structures and Unions in C 6



Structure Initialization
• Rules for initializing structures:

Structures and Unions in C 7



Initialization
Structure Variables:

Structures and Unions in C 8



Initialization
Structure Variables:

Structures and Unions in C 9



Coping Structure Variables

1. Using Assignment Operator (=):

• We can directly assign one
structure variable to another if
they are of the same structure
type. This performs a shallow
copy of the structure.

Structures and Unions in C 10



Coping Structure Variables

2. Using memcpy:

• We can use the memcpy function from
the <string.h> library to perform a
byte-wise copy of the structure.

Structures and Unions in C 11



Comparing Structure Variables

1. Using memcmp:

• We can use the memcmp function
from the <string.h> library to
compare the memory contents of two
structures. This method compares
structures byte by byte.

Structures and Unions in C 12



Comparing Structure Variables

2. Manual Comparison:

• We can compare each member of the structures
individually using logical operators (==, !=, etc.).

Structures and Unions in C 13



Arrays of Structure
• In C, we can create arrays of structures to manage multiple instances of structured data. This is

particularly useful when we need to work with a collection of items, each having multiple attributes.

• In such case, we can declare an array od structures, each element of the array representing a structure
variable. For example:

struct marks{
int sub1;
int sub2;
int sub3;
}

int main(){
struct marks student[3] = {{45, 68, 65}, {75, 55, 65}, {55, 65, 70}};
:

}

Structures and Unions in C 14



Arrays of Structure
• This declares the student as an array of the threeelements student[0], student[1], and

student[2], and initializes their members as follows:

student[0].sub1 = 45;

student[0].sub2 = 68;

student[0].sub3 = 65;

:

student[2].sub3 = 70;

Structures and Unions in C 15



Arrays of Structure

Structures and Unions in C 16



Arrays of Structure

Structures and Unions in C 17



Operations on Individual Members

• A member with the dot operator along with its structure variable can be treated like any
other name and therefore, can be manipulated using expressions and operators. For
example:

if (student1.roll == 103)

student1.marks += 10.0;

float sum = student1.marks + student2.marks;

student2.marks *= 0.5;

• We can also apply increment and decrement operators to numeric type members. For
example:

student1.roll ++;

Structures and Unions in C 18



Structures and Unions in C 19

?THE END


