CSE 06131223 ¢ CSE 06131224

Structured Programming

Lecture 18

Structures and Unions (2)

Prepared by
(Ol=%{D] Md.-Mijanur Rahman, Prof. Dr.
| Dept. of Computer Science and Engineering
Jatiya Kabi Kazi Nazrul Islam University, Bangladesh

[]
@ = www.mijanrahman.com

http://www.mijanrahman.com/

C

Contents

Structures and Unions in C

Structure Initialization

Operations on Individual Members
Array of Structures

Structures and Functions

Unions

Structure Initialization

In C, like any other data type, a structure variable can be initialized at compile time. For example:

int main(){
struct {
int weight;
float height;

}
student = {60, 180.75};

}
This assigns the value 60 to student.weight and 180.75 to student.height. There is one-to-one
correspondence between the members and their initializing values.

A lot of variation is possible in initializing a structures.

2. The following statements initialize two structure variables. Here, it is essential to use a tag
name.

int main(){
struct record{
int weight;
float height;
}

struct record studentl = {60, 180.75};
struct record student2 = {55, 170.55};

3. Another method is to initialize a structure variable outside the function. For example:
struct record{
int weight;
float height;
} studentl = {60, 180.75};

int main(){
struct record student2 = {55, 170.55};

The compile-time initialization of a structure must have the following elements:

h s N=

The keyword struct.

The structure tag name.

The name of the variable to be declared.

The assignment operator =.

A set of values for the members of the structure variable, separated by commas and enclosed in
braces.

A terminating semicolon. \

Rules for initializing structures:

1. We cannot initialize individual members inside the structure template.

2. The order of values enclosed in braces must match the order of members in the structure
definition.

3. It is permitted to have a partial initialization. We can initialize only the first few members and
leave the remaining blank. The uninitialized members should be only at the end of the list.

4. The uninitialized members will be assigned default values as follows:

e Zero for integer and floating point numbers.
e \0’ for characters and strings.

Initialization
Structure Variables:

1 kinclude <stdio.h>

2 #include <string.h>

3 // Define a structure called Person

4~ struct Person {

0 N O 0

}s
9

char name[50];
int age;
float height;

18 -~ int main() {

11
12
13
14
15
16
17
18
19 ~
20
21
22
23

// Method 1: Initialize each member separately
struct Person personl;
strcpy(personl.name, "Rahman");
personl.age = 30;
personl.height = 6.0;
// Method 2: Inline initialization
struct Person person2 = {"Sumi", 20, 5.2};
// Method 3: Using designated initializers
struct Person person3 = {

.name = "Islam",

.age = 35,

.height = 5.9
};

25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
409
41
42
43
44
45
46
47
48
49

// Method 4: Initializing using compound literals

struct Person persond4 = (struct Person){"Emily", 25, 5.4};

// Print out the details of each person

printf("Details of personl:\n");

"

printf("Name: , personl.name);

printf("Age: ", personl.age);
printf("Height: feet ", personl.height);

printf("Details of person2:\n");

printf("Name: , person2.name);

printf("Age: , person2.age);

printf("Height: feet ", person2.height);

printf("Details of person3:\n");

printf("Name: , person3.name);
printf("Age: ", person3.age);

printf("Height: feet ", person3.height);

printf("Details of person4:'\n");
printf("Name: ", persond.name);

printf("Age: ", persond.age);
printf("Height: 2f feet ", persond.height);

return ©;

2] Terminal

Details of personl:
Name: Rahman

Age: 30

Height: 6.00 feet

Details of person2:
Name: Sumi

Age: 20

Height: 5.20 feet

Details of person3:
Name: Islam

Age: 35

Height: 5.90 feet

Details of person4:
Name: Emily

Age: 25

Height: 5.40 feet

Coping Structure Variables

1~ struct Person {

1. Using Assignment Operator (=):

. . 2 char name[50];

We can directly assign one : int age;

structure variable to another if 4 Fioat heieht;

they are of the same structure 5 };

type. This performs a shallow 6

copy of the structure. [int main() {
8 struct Person personl = {"Rahman", 30, 6.0};
9 struct Person person2;
10
11 // Copying personl to person2
12 per‘sonz = personl;
3
14 return ©;

=
Ul
-

) 1 #include <stdio.h>
2. Usmg memcpy: 2 #include <string.h>
We can use the memcpy function from | 3
the <string.h> library to perform a | 47 struct person {
5 char name[5@];
byte-wise copy of the structure. 6 int Hges
7 float height;
8 };
S
10 - int main() {
11 struct Person personl = {"John", 30, 6.0};
12 struct Person person2;
13 // Copying using memcpy
14 memcpy (&person2, &personl, sizeof(struct Person));
15
16 return 0;

Y
~
—

Comparing Structure Variables

#include <stdio.h>
#include <string.h>

1. Using memcmp:

1
2
. 3
We can use the memcmp function | ,. ..uce person ¢
from the <string.h> library to s char name[50];
6
7
8
9

int age;
compare the memory contents of two float height;
structures. This method compares I
structures byte by byte. 10~ int main() {
11 struct Person personl = {"John", 30, 6.0};
12 struct Person person2 = {"John", 30, 6.0};
13 // Comparing using memcmp
14 ~ if (memcmp(&personl, &person2, sizeof(struct Person)) == @) {
15 printf("The structures are equal. ' n");
16 ~ } else {
17 printf("The structures are not equal.'\n");
18 }
19
20 return 9;

214 }

1 #include <stdio.h>
2 #include <string.h>

2. Manual Comparison: 3+ struct Person {
h me[50];
We can compare each member of the structures =

5 int age;
individually using logical operators (==, !=, etc.). . i

8

9~ int main() {

10 struct Person personl = {"John", 30, 6.8};
11 struct Person person2 = {"John", 3@, 6.80};

12
13 // Manual comparison
14 if (strcmp(personl.name, person2.name) == @ &&
15 personl.age == person2.age &%&
16 ~ personl.height == person2.height) {
17 printf("The structures are equal.\n");
18 - } else {
19 printf("The structures are not equal.'n");
20 }
21 return 9;

22 }

Arrays of Structure

In C, we can create arrays of structures to manage multiple instances of structured data. This is
particularly useful when we need to work with a collection of items, each having multiple attributes.

In such case, we can declare an array od structures, each element of the array representing a structure
variable. For example:

struct marks{
int sub1;
int sub2;
int sub3;
}
int main(){
struct marks student[3] = {{45, 68, 65}, {75, 55, 65}, {55, 65,70}};

This declares the student as an array of the threeelements student[0], student[1], and
student[2], and initializes their members as follows:

student[0].subl = 45;
student[0].sub2 = 68;
student[0].sub3 = 65;

student[2].sub3 = 70;

Arrays Of StrUCture . 1 #include <stdio.h>

Structures and Unions in C

2 #include <string.h>
3~ struct Student {

4 char name[50];

5 int roll;

6 float marks[3];

7}

8~ int main() {

9 struct Student students[3];
10 // Initialize student records
11 strcpy(students[@].name, "Hossain");
12 students[@].roll = 101;

13 students[@].marks[@] = 85.5; // Marks for subject 1
14 students[@].marks[1] = 78.0; // Marks for subject 2
15 students[@].marks[2] = 92.3; // Marks for subject 3
16

17 strcpy(students[1].name, "Sumi");

18 students[1].roll = 102;

19 students[1].marks[@] = 79.8;
20 students[1].marks[1] = 88.5;

21 students[1].marks[2] = 70.2;

16

Arrays of Structure

23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38

strcpy(students[2].name, "Prity");
students[2].roll = 103;
students[2].marks[@] = 91.2;
students[2].marks[1] = 83.7;
students[2].marks[2] = 95.0;

)

]

printf("Student Records:'\n");

for (int i = 0; i < 3; i++) {
printf (" \nName: "

printf("“Roll Number: ", students[i].roll);

printf("Marks for Subject 1: ", students[i].marks[@]);

printf("Marks for Subject 2: ", students[i].marks[1]);

printf("Marks for Subject 3: ", students[i].marks[2]);

, students[i].name);

}

return 0;

[>2] Terminal

Student Records:
Name: Hossain
Roll Number: 101
Marks for Subject
Marks for Subject
Marks for Subject

Name: Sumi

Roll Number: 102
Marks for Subject
Marks for Subject
Marks for Subject

Name: Prity

Roll Number: 183

Marks for Subject
Marks for Subject
Marks for Subject

. 85.
2: 78.
. 92.

1: 79.
2: 88.
3: 70.

1: 91

N

. 83.
3: 955

50
00
30

80
50
20

.20

76
(512

Operations on Individual Members

A member with the dot operator along with its structure variable can be treated like any
other name and therefore, can be manipulated using expressions and operators. For
example:
if (studentl.roll == 103)
studentl.marks += 10.0;

float sum = studentl.marks + student2.marks;
student2.marks *= 0.5;

We can also apply increment and decrement operators to numeric type members. For
example:

studentl.roll ++;

