CSE 06131223 ¢ CSE 06131224

Structured Programming

Lecture 19

Structures and Unions (3)

Prepared by
(Ol=%{D] Md.-Mijanur Rahman, Prof. Dr.
| Dept. of Computer Science and Engineering
Jatiya Kabi Kazi Nazrul Islam University, Bangladesh

[]
@ = www.mijanrahman.com

http://www.mijanrahman.com/

C

Contents

Structures and Unions in C

Structure within Structure
Structures and Functions
Unions

Structure Within Structure

In C, "structure within structure" typically refers to the concept of nesting structures, also known as
nested structures or structures within structures. This involves defining one structure (let's call it the
outer structure) that contains another structure (the inner structure) as one of its members.

Let us consider the following structure defined to store a person’s information:
struct Person {
char namel[50];
int age;
int birth_day;
int birth _month;
int birth_year;

I

This structure defines name, age, and three kinds of birthday information: day, month, and year. We can
group all the items related to the birthday together and declare then under a substructure.

We can group all the items related to the birthday together and declare then under a
substructure as follows:
struct Person {
char name[50];
int age;
struct {
int day;
int month;
int year;
lbirthday;
} personl;

We can also declare inner and outer structures as follows:

(1) Define inner structure:
struct Date {
int day;
int month;
int year;

|5

(2) Define outer structure containing inner structure:
struct Person {
char namel[50];
int age;
struct Date birthday;
Iy

Here's an example to illustrate this concept:

1
2

#include <stdio.h>

// Define inner structure

3~ struct Date {

4

5
6
7
8

int day;

int month;

int year;
}s

// Define outer structure containing inner structure

9~ struct Person {

10
11
12
13

char name[50];

int age;

struct Date birthdate;
};

15~ int main() {

structure

structure

16 // Declare a variable of the outer structure type
17 struct Person personl;
18 // Access and modify members of the outer
15 strcpy(personl.name, "John D.");
20 personl.age = 30;
21 // Access and modify members of the inner
22 personl.birthdate.day = 15;
23 personl.birthdate.month = 4;
24 personl.birthdate.year = 1994;
25 // Display information
26 printf("Name: ", personl.name);
27 printf("Age: ", personl.age);
28 printf("Birthdate: /%d/ ", personl.birthdate.day,
.birthdate.month, personl.birthdate.year);
29
30 return 0;
31 }
P-] Terminal
Name: John D.
Age: 30

Birthdate: 15/4/1994

personl

In this example, we have two structures: struct Date
and struct Person.

The struct Date represents a date with day, month,
and vyear fields, while struct Person represents a
person with a name, age, and birthdate.

The struct Person structure contains an instance of
the struct Date structure (birthdate) as one of its
members.

O 0 N O 1 &b W IN =

(ST S o G
w N = O

#include <stdio.h>

// Define inner structure

~ struct Date {

int day;

int month;

int year;
};

// Define outer structure containing inner structure

~ struct Person {

char name[5@];

int age;

struct Date birthdate;
};

Structure and Function

In C, we can work with structures in conjunction with functions. Functions can operate on
structures by accepting them as arguments, returning them as results, or both.
This allows us to encapsulate operations related to structures and manipulate them in a modular

and organized manner.
The following example demonstrating how to use structures and functions together in C:
struct Point {
int x;
inty;
y

void initializePoint(struct Point *p, int x, inty) {
P->X = X;
P->Y =Y,

}

In C, there are three methods by which the values of a structure can be transferred from
one function to another:

1. The first method is to pass each member of the structure as an actual argument of the function
call. The actual arguments are then treated independently like ordinary variables. This is the most
elementary method and becomes unmanageable and inefficient when the structure size is large.

2. The second method involves passing of a copy of the entire structure to the called function.
Since the function is working on a copy of the structure, any changes to structure members
within the function are not reflected in the original structure (in the calling function). It is, therefore,
necessary for the function to return the entire structure back to the calling function. All compilers
may not support this method of passing the entire structure as a parameter.

3. The third approach employs a concept called pointers to pass the structure as an argument. In
this case, the address location of the structure is passed to the called function. The function can
access indirectly the entire structure and work on it. This is similar to the way arrays are passed
to function. This method is more efficient as compared to the second one.

The general format of sending a copy of a structure to the called function is:
Function-name(struct-variable-name);

The called function takes the following form:

data_type function name(struct type st name)

return(expression);

data_type function_name(struct_type st _name)

return(expression);

}

The following points are important to note:

1.

The called function must be declared for its type, appropriate to the data type it is expected to
return. For example, if it is returning a copy of the entire structure, then it must be declared as
struct with an appropriate tag name.

The structure variable used as the actual argument and the corresponding formal argument in the
called function must be of the same struct type.

The return statement is necessary only when the function is returning some data back to the
calling function. The expression may be any simple variable or structure variable or an expression
using simple variables.

When a function returns a structure, it must be assigned to a structure of identical type in the
calling function.

The called functions must be declared in the calling function appropriately.

Here's a simple C program that illustrates passing
an entire structure as a parameter to a function:

18
19
20
21
22
23
24
25
26
27
28
29

// Assign values to the members
strcpy(studentl.name, "S. Islam");
studentl.roll = 101;

studentl.gpa = 3.75;

// Display the information
printf("Information about the student:'\n");

displayStudent(studentl);

return 0;

1 #include <stdio.h>

2 // Define a structure

3~ struct Student {

4 char name[50];

5 int roll;

6 float gpa;

78 };

8 // Function to display info

9~ void displayStudent(struct Student s)
10 printf("Name: ", s.name);
11 printf("Roll: "y S«r0ll);
12 printf("GPA: ", s.gpa);
13}

14

15~ int main() {

16 // Declare a structure variable
17 struct Student studentl;
-] Terminal

Information about the student:
Name: S. Islam

Roll: 101

GPA: 3.75

This demonstrates passing the entire structure as a
parameter to a function in C. In this program:

We define a structure struct Student representing a student
with three members: name, roll, and gpa.

We define a function displayStudent that takes a struct
Student as a parameter and displays the information of the
student contained in that structure.

In the main function, we declare a variable studentl of type
struct Student.

We assign values to the members of studentl.

We then call the displayStudent function and pass studentl
as an argument.

O 0 NO Vb WIN R

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

#include <stdio.h>

// Define a structure
= struct Student {

s

char name[50];
int roll;
float gpa;

// Function to display info
» void displayStudent(struct Student s) {

printf("“Name: ", s.name);
printf("Roll: ¥ S0l
printf("GPA: ", s.gpa);

= int main() {

)

// Declare a structure variable

struct Student studentl;

// Assign values to the members
strcpy(studentl.name, "S. Islam");
studentl.roll = 101;

studentl.gpa = 3.75;

// Display the information
printf("Information about the student:\n");

displayStudent(studentl);

return 0;

1 #include <stdio.h>
2~ struct Point {

3 int x;
4 int y;
ol 15
6+ void initPoint(struct Point *p, int x, int y) {
7 p->X = X;
Example of demonstrating how to use) ; o X
9
structures and functions together in C: O void dtsplayPointisteuct Polnt p) 1
11 printf("Point: (%d, N5 peX; PavY);
18 ~ int main() { 12)
L Strucy polngipls 13 - void movePoint(struct Point *p, int dx, int dy) {
20 initPoint(&pl1, 3, 5); 14 p->X += dx;
21 15 p->y += dy;
22 printf("Initial "); 360 }
23 displayPoint(pl); 17
24 movePoint(&pl, 2, -1);
25 printf("After moving ");
26 displayPoint(p1); -] Terminal
27 guca N
Initial Point: (3, 5)
28 return 0;

29 } After moving Point: (5, 4)

Unions in C

In C programming, a union is a user-defined data type that allows us to store different data types in the
same memory location.

Unlike structures, where each member has its own separate memory space, all members of a union share
the same memory space. This means that only one member of the union can be used at a time.

Like structure, a union can be declared using the keyword ‘union’ as follows:
union item{

int m;

float x;

char c;
lcode;

This declares a variable code of type union item. The union contains three members, each with a different
data type. However, we can use only one of them at a time:

The union contains three members, each with a different data type. However, we can
use only one of them at a time.

This is due to the fact that only one location is allocated for a union variable, irrespective

of its size, as shown below:
Storage of 4 bytes
1000 1001 1002 1003

»
|

Fig: Sharing of a storage locating by union members.

The above example shows how all the three variables share the same address. This
assumes that a float variable requires 4 bytes of storage.

To access a union member, we can use the same syntax that we use for structure
members, as follows:

code.m
code.x
code.c

All are valid member variables.

During accessing, we should make sure that we are accessing the member whose value
is currently stored. For example, the following statements:

code.m =450;
code.x = 340.75;
printf(“m = %d \n x = %f \n”, code.m, code.x);

would produce the output.

1 #include <stdio.h>
2 // Define a union
3~ union Number {
4 int a;
5 float x;
6 double m;
7}
8
. . 9+« int main() {
A baSIC example Of hOW we Can deflne 10 // Declare a union-type variable
. . 11 union Number num;
and use a unionin C: = ’
13 // Assign values
14 num.a = 10;
15 printf("Integer value: ", num.a);
16
17 num.x = 3.14;
18 printf("Float value: ", num.x);
19
20 num.m = 2096,71828;
21 printf("Double value: ", num.m);
2] Terminal 22
23 //When you assign a new value, 1t overwrites the previous one
lntegervalug: 119 24 printf("Integer value after assigning double: ", num.a);
Float value: 3.140000 25
Double value: 2096.718280 26 return 0;

Integer value after assigning double: -1033540930 27 ﬂ

