
Structured Programming

Lecture 19
Structures and Unions (3)

Prepared by________________________________

Md. Mijanur Rahman, Prof. Dr.
Dept. of Computer Science and Engineering

Jatiya Kabi Kazi Nazrul Islam University, Bangladesh
www.mijanrahman.com

CSE 06131223 CSE 06131224

http://www.mijanrahman.com/

Contents
S t r u c t u r e s a n d U n i o n s i n C

• What is Structure?
• Arrays vs. Structures
• Defining Structure
• Declaring Structure Variables
• Accessing Structure Members
• Structure Initialization
• Operations on Individual Members
• Array of Structures
• Structure within Structure
• Structures and Functions
• Unions

Structures and Unions in C 2

Structure Within Structure
• In C, "structure within structure" typically refers to the concept of nesting structures, also known as

nested structures or structures within structures. This involves defining one structure (let's call it the
outer structure) that contains another structure (the inner structure) as one of its members.

• Let us consider the following structure defined to store a person’s information:
struct Person {

char name[50];
int age;
int birth_day;
int birth _month;
int birth_year;

};

• This structure defines name, age, and three kinds of birthday information: day, month, and year. We can
group all the items related to the birthday together and declare then under a substructure.

Structures and Unions in C 3

Structure Within Structure
• We can group all the items related to the birthday together and declare then under a

substructure as follows:
struct Person {

char name[50];

int age;

struct {

int day;

int month;

int year;

}birthday;

} person1;

Structures and Unions in C 4

Structure Within Structure
• We can also declare inner and outer structures as follows:

(1) Define inner structure:
struct Date {

int day;
int month;
int year;

};

(2) Define outer structure containing inner structure:
struct Person {

char name[50];
int age;

struct Date birthday;
};

Structures and Unions in C 5

Structure Within Structure
• Here's an example to illustrate this concept:

Structures and Unions in C 6

Structure Within Structure
• In this example, we have two structures: struct Date

and struct Person.

• The struct Date represents a date with day, month,
and year fields, while struct Person represents a
person with a name, age, and birthdate.

• The struct Person structure contains an instance of
the struct Date structure (birthdate) as one of its
members.

Structures and Unions in C 7

Structure and Function
• In C, we can work with structures in conjunction with functions. Functions can operate on

structures by accepting them as arguments, returning them as results, or both.

• This allows us to encapsulate operations related to structures and manipulate them in a modular
and organized manner.

• The following example demonstrating how to use structures and functions together in C:
struct Point {

int x;
int y;

};

void initializePoint(struct Point *p, int x, int y) {
p->x = x;
p->y = y;

}

Structures and Unions in C 8

Structure and Function
• In C, there are three methods by which the values of a structure can be transferred from

one function to another:

Structures and Unions in C 9

Structure and Function

• The general format of sending a copy of a structure to the called function is:

Function-name(struct-variable-name);

• The called function takes the following form:

Structures and Unions in C 10

Structure and Function

Structures and Unions in C 11

Structure and Function
• Here's a simple C program that illustrates passing

an entire structure as a parameter to a function:

Structures and Unions in C 12

Structure and Function
• This demonstrates passing the entire structure as a

parameter to a function in C. In this program:

• We define a structure struct Student representing a student
with three members: name, roll, and gpa.

• We define a function displayStudent that takes a struct
Student as a parameter and displays the information of the
student contained in that structure.

• In the main function, we declare a variable student1 of type
struct Student.

• We assign values to the members of student1.

• We then call the displayStudent function and pass student1
as an argument.

Structures and Unions in C 13

Structure and Function
• Example of demonstrating how to use

structures and functions together in C:

Structures and Unions in C 14

Unions in C
• In C programming, a union is a user-defined data type that allows us to store different data types in the

same memory location.

• Unlike structures, where each member has its own separate memory space, all members of a union share

the same memory space. This means that only one member of the union can be used at a time.

• Like structure, a union can be declared using the keyword ‘union’ as follows:

union item{

int m;

float x;

char c;

}code;

• This declares a variable code of type union item. The union contains three members, each with a different

data type. However, we can use only one of them at a time.

Structures and Unions in C 15

Unions in C
• The union contains three members, each with a different data type. However, we can

use only one of them at a time.

• This is due to the fact that only one location is allocated for a union variable, irrespective

of its size, as shown below:

Fig: Sharing of a storage locating by union members.

Structures and Unions in C 16

1000 1001 1002 1003

Storage of 4 bytes

Unions in C

• The above example shows how all the three variables share the same address. This

assumes that a float variable requires 4 bytes of storage.

• To access a union member, we can use the same syntax that we use for structure

members, as follows:

code.m

code.x

code.c

All are valid member variables.

Structures and Unions in C 17

Unions in C

• During accessing, we should make sure that we are accessing the member whose value

is currently stored. For example, the following statements:

code.m = 450;

code.x = 340.75;

printf(“m = %d \n x = %f \n”, code.m, code.x);

would produce the output.

Structures and Unions in C 18

Unions in C

• A basic example of how we can define

and use a union in C:

Structures and Unions in C 19

Structures and Unions in C 20

?THE END

