
Structured Programming

Lecture 21
Pointers in C (2)

Prepared by________________________________

Md. Mijanur Rahman, Prof. Dr.
Dept. of Computer Science and Engineering

Jatiya Kabi Kazi Nazrul Islam University, Bangladesh
www.mijanrahman.com

CSE 06131223 CSE 06131224

http://www.mijanrahman.com/

Contents
P o i n t e r s i n C

• What is Pointer in C?
• Memory Organization of Pointers
• Accessing the Address of a Variable
• Declaration of Pointer Variables
• Initialization of Pointer Variables
• Accessing a Variable Through Its Pointer
• Pointer Expressions
• Pointers and Arrays, and Array of Pointers
• Pointers and Strings
• Pointers and Functions
• Pointers and Structures

Pointers in C 2

Accessing a Variable Through Its Pointer
• How to access the value of the variable using the pointer?

• This is done by using another another unary operator * (asterisk), usually known as the
indirection operator. Consider the following statements:

int x, *ptr, y;
x = 10;
ptr = &x;
y = *ptr;
*ptr = 25;

• The first line declares the variables, the second line assigns the value to a variable x, the third
line assigns the address of x to the pointer variable p, and in fourth line, *p returns the value of
the variable x, then assigns to the variable y. The fifth line puts the value of 25 at the address
pointed by ptr.

Pointers in C 3

Accessing a Variable…

• Consider the following statements:

int x, *ptr, y;

x = 10;

ptr = &x;

y = *ptr;

*ptr = 25;

Pointers in C 4Fig: Illustration of pointer assignments

Accessing a Variable…

• C Program for illustrating pointer
assignments:

Pointers in C 5

Pointer Expressions
• Like other variable, pointer variables can be used in expressions. For example if p1 and p2 are

declared and initialized pointers, then the following statements are valid.

y = *p1 * *p2;

sum = sum + *p1;

z = 5 * - *p2/ *p1;

*p2 = *p2 + 10;

• Not that there is a blank space between / and * in line 3. But the following is wrong:

z = 5* - *p2 /*p1;

•

Pointers in C 6

Pointer Expressions
• C Program for illustrating pointer

expressions:

Pointers in C 7

Pointer Increment and Scale Factor

• The pointers can be incremented as:

p1 = p2 + 2;

p1 = p1 + 1;

• An expression like:

p1++;

will cause the pointer ptr to point the next value of its type. If ptr is an interger with an
initial value, 28000, then after the operation p1=p1 + 1, the value of p1 will be 28002, but
not 28001.

Pointers in C 8

Pointer Increment and Scale Factor

• Rules of Pointer Operations:

Pointers in C 9

Pointers and Arrays

• When an array is declared, the compiler allocates a base address and sufficient amount
of storage to contain all elements of the array in contiguous locations.

• The base address is the location of the first element (index 0) of the array. The compiler
also defines the array name as a constant pointer to the first element. Suppose we
declare an array x as follows:

int x[5] = {1, 2, 3, 4, 5};

Pointers in C 10

Pointers and Arrays

• The name p is defined as a constant pointer pointing the first element, x[0]. That is,

p = &x[0] (= 1000)

• This can be assigned as:

p = x;

• The relationship between p and x is shown as:

• The address of element is calculated using its index and the scale factor of the data type.
For instance,

address of x[3] = based address + (3 x scale factor of int)

= 1000 + (3 x 2) = 1006
Pointers in C 11

Pointers and Arrays

• Here's a C program demonstrating
pointer increment and scale factor
using array of elements:

Pointers in C 12

Pointers and Arrays

• C Program using pointers to compute the sum of all elements stored in an array.

Pointers in C 13

Pointers and Character Strings

• In C, strings are represented as arrays of characters, terminated by a null character \0.
Pointers are commonly used to work with strings, allowing efficient access to
individual characters and enabling various string manipulation operations.

• Consider the following character strings:

char str[5] = “good”’

• C supports an alternative method to create strings using pointer variables of type char.
For example:

char *str = “good”;

Pointers in C 14

Pointers and Strings
• Here's a simple example that demonstrates the

usage of pointers with character strings:

Pointers in C 15

Array of Pointers
• An array of pointers in C is an array where each

element is a pointer to another data type. It's
commonly used to store addresses of other variables
or to create arrays of strings.

• Here's a simple example demonstrating the concept:

Pointers in C 16

Array of Pointers
• Pointers are commonly used in handling

tables of strings in C, particularly when
dealing with arrays of character pointers.

• This approach allows us to manage and
manipulate strings efficiently.

• Here's an example demonstrating the
concept:

Pointers in C 17

Pointers in C 18

?THE END

