CSE 06131223 ¢ CSE 06131224

Structured Programming

Lecture 21
Pointers in C (2)

Prepared by
(Ol=%{D] Md.-Mijanur Rahman, Prof. Dr.
| Dept. of Computer Science and Engineering
Jatiya Kabi Kazi Nazrul Islam University, Bangladesh

[ ]
@ = www.mijanrahman.com



http://www.mijanrahman.com/

C

Contents

Pointers in C

Accessing a Variable Through Its Pointer
Pointer Expressions

Pointers and Arrays, and Array of Pointers
Pointers and Strings

Pointers and Functions

Pointers and Structures

-4



Accessing a Variable Through Its Pointer

How to access the value of the variable using the pointer?

This is done by using another another unary operator * (asterisk), usually known as the
indirection operator. Consider the following statements:

int x, *ptr, y;
x =10;
ptr = &x;
y = *ptr;
*ptr = 25;
The first line declares the variables, the second line assigns the value to a variable x, the third

line assigns the address of x to the pointer variable p, and in fourth line, *p returns the value of
the variable x, then assigns to the variable y. The fifth line puts the value of 25 at the address

pointed by ptr.



Consider the following statements:
int x, *ptr, y;
X =10;
ptr = &x;
y = *ptr;
*ptr = 25;

Values in the storage cells and their addresses

ptr

4106

4106

4104

4106

4104

X y
Declaration
4104 4108
x=10 10
4104 4108
ptr = &x 10
4104 4108
l
y =il o 10 10
4104 4108
~———— pointer to x
“ptr =25 25 10
4104 4108

Fig: lllustration of pointer assignments

4106

4104

4106

address

address

address

address



Accessing a Variable...

C Program for illustrating pointer
assignments:

) Terminal

Numl = 10, Num2 = 20

ptrl = @x7fff20bda650, ptr2 = @x7fff20bda654
*ptrl = 10, *ptr2 = 20

After pointer assignments:

numl = 20, num2 = 20

ptrl = @x7fff20bda650, ptr2 = @x7fff20bda654

*ptrl = 20, *ptr2 = 20

Pointers|

1 #include <stdio.h>
2~ int main() {

3

O 0 N O b

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

int numl = 10;

20;

int num2

int *ptrl, *ptr2;

// Assign the addresses of numl and num2

ptrl = &numl;
ptr2 = &num2;

// Print the values of numl, num2, ptrl, and ptr2
printf("Numl = %d, Num2 = %d\n", numl, num2);
printf("ptrl = %p, ptr2 =/ \",ptrl, ptr2);
printf("*ptrl = %d, *ptr2 = n",*ptrl, *ptr2);

// Assign the values of numl and num2
*ptril
*ptr2 =
// Print the updated values

num2;

numl;

printf("After pointer assignments:

n");

printf("numl = %d, num2 = n", numl, num2);
printf("ptrl = %p, ptr2 = ¥p\n", (void *)ptrl, (void *)ptr2);
printf("*ptrl = %d, *ptr2 = %d\n",*ptrl, *ptr2);

return 0;




Pointer Expressions

Like other variable, pointer variables can be used in expressions. For example if pl and p2 are
declared and initialized pointers, then the following statements are valid.

y="pl* *p2;
sum =sum + *pi;
z=5%- *p2/*pl;
*p2 = *p2 +10;
Not that there is a blank space between / and * in line 3. But the following is wrong:
z=5%-%p2 [*p1;



C Program for
expressions:

illustrating pointer

[>_) Terminal
*ptr: 10
*ptr + 1: 11
*ptr - 1: 9
*ptr * 2% 20
*ptr / 2 5
*ptr % 3¢ 1
*ptr + *ptr2
*ptr / *ptr2
*ptr * *ptr2
*ptr - *ptr2

s 45

: 50

1

#include <stdio.h>

2~ int main() {

3

O 00 N O v B

10
11
12
13
14
I5
16
17
18
19
20

int numl = 10;
int num2 = 5;
int *ptr = &numl;

int *ptr2 = &num2;

// Pointer arithmetic expressions

printf("*ptr:
printf("*ptr
printf("*ptr
printf("*ptr
printf("*ptr
printf("*ptr
printf("*ptr

-

*

/

printf("*ptr /
printf("*ptr *

printf("*ptr

return 0;

s *ptr);

Y& CFptr + 1))
"y (*ptr - 1));
"5 (*ptr * 2))3
Yy Fptre J 2));

e (PR R 3));

", (*ptr +
Y5 (*pte
Ty (CpER ¥
"5 (*pte

*ptr2));
*ptr2));
*ptr2));
*ptr2));



Pointer Increment and Scale Factor

The pointers can be incremented as:
pl=p2+ 2;
pl=pl+1;
An expression like:
pl++;
will cause the pointer ptr to point the next value of its type. If ptr is an interger with an

initial value, 28000, then after the operation pl=p1 + 1, the value of p1 will be 28002, but
not 28001.



Rules of Pointer Operations:
The following rules apply when performing operations on pointer variables.

1. A pointer variable can be assigned the address of another variable.

A pointer variable can be assigned the values of another pointer variable.

A pointer variable can be initialized with NULL or zero value.

A pointer variable can be pre-fixed or post-fixed with increment or decrement operators.

An integer value may be added or subtracted from a pointer variable.

When two pointers point to the same array, one pointer variable can be subtracted from another.

When two pointers point to the objects of the same data types, they can be compared using
relational operators.

A pointer variable cannot be multiplied by a constant.
. Two pointer variables cannot be added.
10. Avalue cannot be assigned to an arbitrary address (i.e., &x =10; is illegal).

NG s N

© o



Pointers and Arrays

When an array is declared, the compiler allocates a base address and sufficient amount
of storage to contain all elements of the array in contiguous locations.

The base address is the location of the first element (index 0) of the array. The compiler
also defines the array name as a constant pointer to the first element. Suppose we
declare an array x as follows:

int x[5] =11, 2, 3, 4, 5};

Elements — x[0] x[1] x[2] X[3] x[4]
Value — 1 2 3 4 5
Address —> 1000 1002 1004 1006 1008

T— Base address



The name p is defined as a constant pointer pointing the first element, x[0]. That is,
p = &x[0] (= 1000)
This can be assigned as: o = &x[0] (= 1000)
P=X p+1 = &x[1] (= 1002)
The relationship between p and x is shown as:  p+2 = &x[2] (= 1004)
p+3 = &x[3] (= 1006)
p+4 = &x[4] (= 1008)
The address of element is calculated using its index and the scale factor of the data type.
For instance,
address of x[3] = based address + (3 x scale factor of int)
= 1000+ (3 x2) =1006



Here's a C program demonstrating
pointer increment and scale factor
using array of elements:

[>2) Terminal

Initial array elements:
array[@] = 10

array[1] = 2@

array[2] = 3@

array[3] = 40

array[4] = 5@

Pointer increment and accessing elements:
Value at ptr = 10

Address of ptr = Ox7fff7f341b30
Value at ptr = 20

Address of ptr = @x7fff7f3241b34
Value at ptr = 30

Address of ptr = @x7fff7f341b38
Value at ptr = 40

Address of ptr = @x7fff7f341b3c
Value at ptr = 50

Address of ptr = @x7fff7f341b46

1 #include <stdio.h>
2~ int main() {

O 00 N O U
4

10
15 |
12
13
14
15
16
7
18

int array[] = {10, 20, 30, 40, 50};

// Pointer to the first element of the array
int *ptr = array;

printf("Initial array elements:\n");

for (int 1 = 0; i < 5; i++) {

printf("array[%d] = , 1, array[i]);

}
printf("\nPointer increment and accessing elements:\n");
for (int 1 = 0; i < 5; i++) {
printf("Value at ptr = = *ptr);
printf("Address of ptr = ~. PER):
ptres;
}
return 0;



C Program using pointers to compute the sum of all elements stored in an array.

1 #include <stdio.h>
2~ int main() {

3 int array[] = {10, 20, 30, 40, 50};
4 int *ptr = array; // Pointer to the first element of the array
5 int sum = 9;
6 printf("Elements in the array:\n");
7~ for (int 1 =0; 1 < 5; i++) {
TS 8 printf(" vy L)
9 sum += *ptr;
Elements in the array: 10 ptrid;
10
5% 11 }
30 12 printf("Sum of all elements in the array: ", sum);
40 13
50 14 return 9;

Sum of all elements in the array: 150 15 }



Pointers and Character Strings

In C, strings are represented as arrays of characters, terminated by a null character \0.
Pointers are commonly used to work with strings, allowing efficient access to
individual characters and enabling various string manipulation operations.
Consider the following character strings:

char str[5] = “good”
C supports an alternative method to create strings using pointer variables of type char.
For example:

char *str = “good”;

str



1 #include <stdio.h>

2~ int main() A

3 char str_array[] = "Hello, Array String!";
Here's a simple example that demonstrates the 4 char *str_ptr = "Hello, Pointer String!";
usage of pointers with character strings: 5
6 // Printing the strings using array indexing
7 printf("String using array indexing:\n");
8~ for (int i = 0; str_array[i] != '\0@'; i++) {
9 printf("%c", str_array[i]);
10 }
i B |
12 // Printing the strings using pointer arithmetic
13 printf("\nString using pointer arithmetic:\n");
6] Terminal 14 ~ while (*str_ptr = "\0") {
5 printf("%c", *str_ptr);
String using array indexing: 16 str_ptr++;
Hello, Array String! 17 }
String using pointer arithmetic: 18 return 0;

Hello, Pointer String! 19 }l



Array of Pointers

An array of pointers in C is an array where each |; 4inciude <stdio.hs
element is a pointer to another data type. It's|2- int main() {

commonly used to store addresses of other variables | 3 int *ptrArray[3];
or to create arrays of strings. 4 int numl = 10, num2 = 20, num3 = 30;
5
6 // Assign the addresses of variables
Here's a simple example demonstrating the concept: |, o™
8 ptrArray[1l] = &num2;
9 ptrArray[2] = &num3;
10
11 printf("Values using pointers:\n");
) Terminal 12 ~ for (int 1 = 9; i < 3; i++) {
Values using pointers: 2 printf(“value . ", 1+ 1, *ptrArray[i]);
Value 1: 10 14 }
value 2: 20 15 return 0;

Value 3: 30 16 }



1 #include <stdio.h>
2~ int main() {

3 // Table of strings

char *strings[] = {"Hello", "world", "from", "C", "programming"};

4
5

6 // Calculate the number of strings in the array
Pointers are commonly used in hand“ng 7 int num_strings = sizeof(strings) / sizeof(strings[@]);
tables of strings in C, particularly when | &

S

)

dealing with arrays of character pointers. BEANER(SEeRiES A0 arvayshe)s

Thi h all d i for (int i = @; i < num_strings; i++) {
R O o L 0 Manage and printf("%s\n", strings[i]);

manipulate strings efficiently. 12 }

13 return 9;

Here's an example demonstrating the (14 }

concept:
-] Terminal
Strings in the array:
Hello
world
from
C
programming






