
1

Lecture 11

Problems and Proof Techniques (1)
Md. Mijanur Rahman, Prof. Dr.

Dept. of Computer Science and Engineering, Jatiya Kabi Kazi Nazrul Islam University, Bangladesh.

www.mijanrahman.com

CSE 305

http://www.mijanrahman.com/

222

Contents
Problems and Proof Techniques

Task and Problem

Problem Representations

Types of Problems

Definitions, Theorems, Proofs

Proof Techniques

Proof Techniques:
• Direct proof technique

• Proof by construction

• Proof by contradiction

• Proof by counter example

• Proof by induction

• Proof by using pigeonhole principle

• Proof technique for if and only if statements

333

Problem

44

Task and Problem

4

• A distinction can be made between “task” and “problem.” Generally, a task is a well-

defined piece of work that is usually imposed by another person and may be

burdensome.

• A problem is generally considered to be a task, a situation, or person which is difficult

to deal with or control due to complexity and intransparency. In everyday language, a

problem is a question proposed for solution, a matter stated for examination or proof.

• In each case, a problem is considered to be a matter which is difficult to solve or settle, a

doubtful case, or a complex task involving doubt and uncertainty.

55

Problem Representations

5

• The first step towards solving a problem is to express it using some language or
notation, usually mathematical, that is especially suited to the problem. This
process of expressing our problem in suitable language is called problem
representation.

• Consider the following Average problem, solvable by a machine. We can state our
problem in two parts: a given part and a problem.

Average

• Given: A natural number n, with n>0, and a list l of n natural numbers (x1, x2,…, xn).

• Problem: Computer the average value,
1

2
σ𝑖=1
𝑛 𝑥𝑖

6

Problem Representations

6

• At first glance, this problem has a very simple representation. The given part of Average could
be supplied explicitly, as for example,

• N = 4, l = (29, 31, 64, 26)

• We can easily imagine feeding this exact input into a machine after some suitable alphabet
encoding.

• The first thing that the machine would have to do is parse the input to determine n (by
converting from decimal to binary perhaps), and then extract out the natural numbers to be
averaged.

• Alternatively, if we wanted to make things a bit easier for the machine (more difficulty for the
human) we could provide the inputs already converted into binary and simply separated by a
character like #. For example:

• 100#11101#11111#1000000#11010

• In the latter case, our input alphabet is smaller than before, but reading the representation is
much harder for humans.

7

Problem Representations

7

• A more difficult issue is how to represent the solution to the Average problem. We have two

scenarios to deal with:

1. The first, common to all problems, is what should the solution be when the input docs not

obey the problem constraints, or is otherwise garbage?

• For example, the input could be n = 0, l = (1, 2) (a case of a bad n), or it could be n = (--)

(a case of simple garbage).

• For these kinds of given instances, the "solution" should probably be an error message

such as “bad Input," or perhaps a solution of A, using the empty string to indicate no

solution because of bad input.

• How this is ultimately handled is problem-specific. As a general rule we want to choose our

representations so that it is easy to check for legitimate inputs.

8

Problem Representations

8

2. The second scenario involves the nature of the solution. The average of a list of natural

numbers could be a rational number, that is, a number a/b where aN and bN-{0}. We might

describe represent and describe the problem as follows:

Average

• Given: A natural number n, with n>0, and a list l of n natural numbers (x1, x2,…, xn).

• Problem: Computer the natural numbers a and b, such that
𝑎

𝑏
=

1

2
σ𝑖=1
𝑛 𝑥𝑖

• The machines we study in computation theory take strings as input and produce

strings as output. They do not directly manipulate more general objects, such as natural

numbers, lists, graphs, or logical expressions.

• Instead they operate on encodings of representations of these objects. But since every alphabet

can be encoded in terms of the binary alphabet, every problem representation can be translated

into a binary string.

1

9

Problem Representations

9

• Lets us give a very general abstract definition of the notion of problem:

• Definition (Problem): A problem  is a total relation on {0, l}* × {0, l}*. If (G, S) , then

G{0,1}* is called the given part of , and S {0, 1}* is called the solution part of .

Associated with  is the problem part, which consists of a question to resolve or a request to

compute some object.

• A few remarks are in order regarding this definition:

• The given part G may be thought of as the input to  ("pie"); it describes a particular instance of

the problem.

• The problem part consists of the question to resolve or a request to compute some object.

• The solution part S is the answer to the problem part for a specific problem input; S may be

considered as the output.  is required to be a total relation.

• This means that each string in {0,1}* appears as a first component of some ordered pair in . Thus

every possible instance must have some associated solution part.

1

1010

Types of Problems

10

• The theory of computation deals with three key kinds of problems: decision, function, and
search.

• Decision problems can be translated directly and naturally into language recognition problems,
allowing us to relate groups of what would appear to be rather diverse and incompatible
prob1ems.

• Function problems are those where every input has a single output, and so have the
property that machines that solve them always produce the same solution for the same instance.

• In general, problems can have more than one solution. If we just want an answer, we can
search for any of the possible solutions. Since each instance of a search problem can have
many possible solutions, every time we solve the same instance we could get a different
answer than before.

• We might also wish to find all possible solutions, in which case we want to enumerate (or list)
the possible solutions in some order.

1111

Types of Problems

11

Decision Problems:

• Definition: A decision problem D is a problem such that for each given part G{0, 1}* there
exists a single solution part S{0, l }.

• The given G states the input to the problem, and the solution part S specifies the answer.
That is, the solution to a decision problem corresponding to a given part is unique and is
either 1 (YES) or 0 (No).

• A decision problem whose solution is l is called a YES instance, and one whose solution is 0 is
called a NO instance.

1212

Types of Problems

12

Function Problems:

• Definition: A function problem F is a problem such that for each given part G{0, 1}* there
exists a single solution part S, which is a string in {0, 1}*.

• The given segment is similar to that for a decision problem; however, the solution part
can be any string from {0, 1}*.

• Thus, any type of coded object can be returned as an answer, but the solution corresponding to
a specific input must be unique.

1313

Types of Problems

13

Search Problems:

• Definition: A search problem S is a problem such that for each given part G{0, 1}* there
exists at least one solution part S{0, 1}*.

• Since a search problem is any total binary relation over {0, 1}* × {0, 1}*, it is in fact the
same thing as a general problem. But the term "search problem" is often used in the literature
to emphasize the general nature of the problem to be solved.

• Of course, any decision problem can be viewed as a function problem, and any function
problem can be viewed as a search problem. However, the reverse of either of these
statements does not hold in general.

1414

?THE END

14

