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Properties of Transition Function

« Atransition function is defined on every state for every input symbol.

 Transition Function (d) is definedas o =Q X X —> Q.
Where,
Q 1s set of all states.
> 1s set of input symbols.

Properties of transition functions:
* Property 1: 6(q, a) = g. It means the state of a system can be changed by an input symbol, a.
* Property 2: For all strings w and input symbol a,

6(q, aw) = d(d(q, &), W)

6(q, wa) = 0(5(q, w), a)

It means the state after the automaton consumes or reads the first symbol of a string aw and the
state after the automaton consumes a prefix of the string wa. n




Extended Transition Function

* The extended transition function 6* of an automaton M tells us what state M ends up In
after processing an entire string of characters.

 In fact, the definition of 6* is what tells us what we mean when we say “process a string”’.

* o*Issimilar to 6 but different in important ways:
1. o* Inputs entire strings, while & inputs single characters.

2. Each automaton has its own definition of o; the definition of &* Is the same for every
automaton (although it depends on 6).

« The definition of 6* is different for different kinds of automata (DFA, NFA, etc).




Extended Transition Function

 Extended transition function for DFA:

Intuitively, when a DFA processes the empty string, it doesn't do anything: if it started in state g,

then it stays in state @.
To process the string xa, the DFA would first process the substring X, and then take one more step

with the character aa (using the automaton's single step transition function).

 This intuition leads to the following definition:

Given an DFA .M, we define the extended transition function 0 : () » ¥ — () inductively by 5 (g,2) = q,and

0 ((L fEG,) - ‘.)'(‘5 (Q3 .’I)), (1,).




Extended transition function for DFA:

Thus, an extended transition function (6*) takes two arguments. The first argument is a state g

and the second argument is a string w.
It returns a state just like the transition function 6. It can be defined as the state in which the FA

ends up, If it begins in state g and receives string x of input symbols.

We define 6* recursively as follows:

1. ForanygeQ, d*(q,€)=¢g
2. ForanygeQandaceZ,

3. 6%(q, ya) =8(5*(q,y), a)




Language of a DFA

A DFA defines a language. The set of all strings that result in a sequence of state transition
from start state to an accepting state is the language defined by the DFA.

 The language is denoted as L(M) fora DFAM = (Q, X, o, F q,), and is defined by:
L(M) ={w:8™(q,, W) Is In F}.

* Here &* Is the extended transition function. The language represented by a DFA is regular.

* In order to accept a language L, the FA has to accept all the strings in L and reject all the
strings in L'(compliment of a language, 1.e. strings not in the language).




Minimization of DFA

* Minimization of DFA means reducing the number of states from given FA. Thus, we get
the FSM(finite state machine) with redundant states after minimizing the FSM.

« Construct a minimum state automata equivalent to given automata: We have to follow the
various steps to minimize the DFA. These are as follows:

« Step 1: Remove all the states that are unreachable from the initial state via any set
of the transition of DFA.

 Step 2: Draw the transition table for all pair of states.

« Step 3: Now split the transition table into two tables T1 and T2. T1 contains all
final states, and T2 contains non-final states.




« Step 4: Find similar rows from T1 such that:
1.6(9,a)=p
2.0 (r,a)=p
That means, find the two states which have the same value of a and b and remove one of them.
« Step 5: Repeat step 3 until we find no similar rows available in the transition table T1.
« Step 6: Repeat step 3 and step 4 for table T2 also.

« Step 7: Now combine the reduced T1 and T2 tables. The combined transition table is the
transition table of minimized DFA.




« Example-1: Consider a DFA given in the following figure. Construct a minimum
state automata equivalent to given automata.

« Step 1: In the given DFA, g2 and g4 are the unreachable states so remove them.

« Step 2: Draw the transition table for the rest of the states.
* The given DFA:

State 0 1
-q0 ql q3
ql q0 q3
*q3 gs g5




« Step 3: Now divide rows of transition table into two sets as, T1 and T2:
1. One set (T1) contains those rows, which start from non-final states:

State 0 1
q0 ql q3
ql q0 q3

2. Another set (T2) contains those rows, which starts from final states. . The given DFA:

State 0 1




« Step 4: Set 1 (T1) has no similar rows so set 1 will be the same.
« Step 5: Inset 2, row 1 and row 2 are similar since g3 and g5 transit to the same state on 0 and 1. So skip

g5 and then replace g5 by g3 in the rest.

State 0 1
q3 q3 g3
« Step 6: Now combine set 1 and set 2 as: +  The given DFA:
State 0 1
—-q0 ql q3
q1 q0 q3
*q3 q3 q3

Now it Is the transition table of minimized DFA.




Minimization of DFA

« Step 7: The following is the transition diagram of minimized DFA.

State 0 1

-q0 ql q3
ql q0 q3
*q3 q3 q3

* The given DFA:

0.1




« Example-2: Consider a DFA given in the following figure. Construct a minimum state automata
equivalent to given automata.

* The given DFA:

 Transition table for the given automata:

State Input = a Input = b
->(0 Initial state gl q3
ql q2 q4
g2 gl gl
q3 q2 q4
g4 Final state q4 q4

« After minimization, we have three states of the minimized DFA:
1. {04},
2. {90,092},
3. {9q1,g3}

 The minimized DFA:




« Hints: Split final states and non final states.

A0 = {4}

Al ={q0,91,92,93}

A0 cannot be partition further.
In Al,

g0 is 1 equivalent to g2 for input a, but not equivalent to g1 and g3.
gl is 1 equivalent to g3 for input a and b, but not to q0 and g2.

So, Al can be partitioned as,
BO = {q0, g2}
B1={ql, g3}

Thus, the set of states: {g4}, {90,092}, {q1,q3}

After minimization, we have three states of the minimized DFA:

The minimized DFA:

1. {94}, State Input=a Input = b
2 {qO,qZ}, ->{q0,g2} Initial state {q1,q3} {q1,q3}
3. {g1,03} {91,g3} {9092} {94}

' qi.9 {q4} Final state {q4} {q4}
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