

Lecture 16 Finite-State Automata (3)

Md. Mijanur Rahman, Prof. Dr.

Dept. of Computer Science and Engineering, Jatiya Kabi Kazi Nazrul Islam University, Bangladesh. www.mijanrahman.com

General State Machine

- **Types of Finite Automata**
- **Transition Function, Diagram and Table**
- **DFA** with Definitions and Examples
- **Extended Transition Function**
- **Language of a DFA**
- □ Minimization of DFA

- □ NFA, e-NFA with Definitions and Examples
- **The Equivalence of DFA's and NFA's**
- □ The Equivalence of NFA's with and without e-moves
- **Conversion of e-NFA into NFA (without e)**
- **Two-way FA**
- □ FA with Output: Moore machine, Mealy machine, Equivalence
- □ Applications of FA

Properties of Transition Function

- A transition function is defined on every state for every input symbol.
- Transition Function (δ) is defined as δ = Q X Σ -> Q.
 Where,
 - Q is set of all states.
 - Σ is set of input symbols.

Properties of transition functions:

- **Property 1:** $\delta(q, a) = q$. It means the state of a system can be changed by an input symbol, *a*.
- **Property 2:** For all strings w and input symbol a, $\delta(q, aw) = \delta(\delta(q, a), w)$ $\delta(q, wa) = \delta(\delta(q, w), a)$
- It means the state after the automaton consumes or reads the first symbol of a string *aw* and the state after the automaton consumes a prefix of the string *wa*.

Extended Transition Function

- The extended transition function δ^* of an automaton M tells us what state M ends up in after processing an entire string of characters.
- In fact, the definition of δ^* is what tells us what we mean when we say "process a string".
- δ^* is similar to δ but different in important ways:
 - 1. δ^* inputs entire strings, while δ inputs single characters.
 - 2. Each automaton has its own definition of δ ; the definition of δ^* is the same for every automaton (although it depends on δ).
- The definition of δ^* is different for different kinds of automata (DFA, NFA, etc).

Extended Transition Function

- Extended transition function for DFA:
 - Intuitively, when a DFA processes the empty string, it doesn't do anything: if it started in state q, then it stays in state q.
 - To process the string *xa*, the DFA would first process the substring *x*, and then take one more step with the character aa (using the automaton's single step transition function).
- This intuition leads to the following definition:

Definition: extended transition function for DFA Given an DFA M, we define the extended transition function $\hat{\delta}: Q \times \Sigma^* \to Q$ inductively by $\hat{\delta}(q, \varepsilon) = q$, and $\hat{\delta}(q, xa) = \delta(\hat{\delta}(q, x), a)$.

Extended Transition Function

- Extended transition function for DFA:
- Thus, an extended transition function (δ*) takes two arguments. The first argument is a state q and the second argument is a string w.
- It returns a state just like the transition function δ . It can be defined as the state in which the FA ends up, if it begins in state q and receives string x of input symbols.
- We define δ^* recursively as follows:
 - 1. For any $q \in Q$, $\delta^*(q, \epsilon) = q$
 - 2. For any $q \in Q$ and $a \in \Sigma$,
 - 3. $\delta^{*}(q, ya) = \delta(\delta^{*}(q, y), a)$

Language of a DFA

- A DFA defines a language. The set of all strings that result in a sequence of state transition from start state to an accepting state is the language defined by the DFA.
- The language is denoted as L(M) for a DFA $M = (Q, \Sigma, \delta, Fq_0)$, and is defined by: $L(M) = \{w:\delta^*(q_0, w) \text{ is in } F\}.$
- Here δ^* is the extended transition function. The language represented by a DFA is regular.
- In order to accept a language L, the FA has to accept all the strings in L and reject all the strings in L'(compliment of a language, i.e. strings not in the language).

- Minimization of DFA means reducing the number of states from given FA. Thus, we get the FSM(finite state machine) with redundant states after minimizing the FSM.
- **Construct a minimum state automata equivalent to given automata:** We have to follow the various steps to minimize the DFA. These are as follows:
 - **Step 1:** Remove all the states that are unreachable from the initial state via any set of the transition of DFA.
 - Step 2: Draw the transition table for all pair of states.
 - Step 3: Now split the transition table into two tables T1 and T2. T1 contains all final states, and T2 contains non-final states.

- **Step 4:** Find similar rows from T1 such that:
 - 1. δ (q, a) = p
 - 2. δ (r, a) = p

That means, find the two states which have the same value of a and b and remove one of them.

- Step 5: Repeat step 3 until we find no similar rows available in the transition table T1.
- **Step 6:** Repeat step 3 and step 4 for table T2 also.
- **Step 7:** Now combine the reduced T1 and T2 tables. The combined transition table is the transition table of minimized DFA.

- Example-1: Consider a DFA given in the following figure. Construct a minimum state automata equivalent to given automata.
- Step 1: In the given DFA, q2 and q4 are the unreachable states so remove them.
- Step 2: Draw the transition table for the rest of the states.

State	0	1
→q0	q1	q3
q1	q0	q3
*q3	q5	q5
*q5	q5	q5

- Step 3: Now divide rows of transition table into two sets as, T1 and T2:
 - 1. One set (T1) contains those rows, which start from non-final states:

State	0	1	
q0	q1	q3	
q1	q0	q3	

2. Another set (T2) contains those rows, which starts from final states. • The given DFA:

State	0	1	
q3	q5	q5	
q5	q5	q5	

- Step 4: Set 1 (T1) has no similar rows so set 1 will be the same.
- Step 5: In set 2, row 1 and row 2 are similar since q3 and q5 transit to the same state on 0 and 1. So skip q5 and then replace q5 by q3 in the rest.

State	0	1	
q3	q3	q3	

• Step 6: Now combine set 1 and set 2 as:

State	0	1	
→q0	q1	q3	
q1	q0	q3	
*q3	q3	q3	

• Now it is the transition table of minimized DFA.

• The given DFA:

• Step 7: The following is the transition diagram of minimized DFA.

State	0	1	
→q0	q1	q3	
q1	q0	q3	
*q3	q3	q3	

• The given DFA:

- Example-2: Consider a DFA given in the following figure. Construct a minimum state automata equivalent to given automata.
- Transition table for the given automata:

State	Input = a	Input = b
->q0 Initial state	q1	q3
q1	q2	q4
q2	q1	q1
q3	q2	q4
q4 Final state	q4	q4

- After minimization, we have three states of the minimized DFA:
 - 1. $\{q4\},\$
 - 2. $\{q0,q2\},\$
 - 3. {q1,q3}

• The given DFA:

• The minimized DFA:

- Hints: Split final states and non final states.
 - $A0 = \{q4\}$
 - A1 = {q0,q1,q2,q3}

A0 cannot be partition further.

In A1,

q0 is 1 equivalent to q2 for input a, but not equivalent to q1 and q3.

q1 is 1 equivalent to q3 for input a and b, but not to q0 and q2.

So, A1 can be partitioned as,

 $B0 = \{q0, q2\}$

- $B1 = \{q1, q3\}$
- Thus, the set of states: {q4}, {q0,q2}, {q1,q3}
- After minimization, we have three states of the minimized DFA:
 - 1. $\{q4\},\$
 - 2. $\{q0,q2\},\$
 - 3. {q1,q3}

State	Input = a	Input = b	
->{q0,q2} Initial state	{q1,q3}	{q1,q3}	
{q1,q3}	{q0,q2}	{q4}	
{q4} Final state	{q4}	{q4}	

• The minimized DFA:

