
Prof. Dr. Md. Mijanur Rahman. www.mijanrahman.com
1

Basic Programming with Python

Prepared By:

Professor Dr. Md. Mijanur Rahman

Department of Computer Science & Engineering

Jatiya Kabi Kazi Nazrul Islam University, Bangladesh.

www.mijanrahman.com


OOP Concepts in Python

CONTENTS
8.9 Constructor in Python ..1

8.9.1 Non-Parameterized Constructor in Python ..3

8.9.2 Parameterized Constructor in Python ..5

8.9.3 Multiple Constructors in Single class ..6

8.9.4 Instance Variable and Instance Method ...7

8.9 CONSTRUCTOR IN PYTHON

In Python, a constructor is a special method within a class that is automatically called when a new

instance of the class is created. The purpose of a constructor is to initialize the object's attributes.

In Python, the constructor method is named __init__(). It's defined within the class like any other

method, but it always takes at least one parameter, typically named self, which refers to the

instance of the class being created.

In C++ or Java, the constructor has the same name as its class, but it treats constructor differently

in Python. It is used to create an object.

Constructors can be of two types.

1. Parameterized Constructor

2. Non-parameterized Constructor

http://www.mijanrahman.com/
http://www.mijanrahman.com/

8. OOP Concepts in Python

 Prof. Dr. Md. Mijanur Rahman. www.mijanrahman.com
2 2

Creating the Constructor in Python

Creating a constructor in Python involves defining the __init__() method within a class. Here's a

step-by-step guide to creating a constructor:

1. Define the class.

2. Define the __init__() method within the class.

3. Within the __init__() method, initialize the attributes of the class using the self keyword.

Here's an example:

class Person:
 def __init__(self, name, age):
 self.name = name
 self.age = age

Creating an instance of the Person class
person1 = Person("Rahman", 30)

Accessing attributes of the object
print(person1.name) # Output: Rahman
print(person1.age) # Output: 30

Counting the number of objects of a class

We can count the number of objects created from a class by utilizing the constructor method

(__init__()). Inside the constructor, we can update a class variable each time a new object is

instantiated.

Here's how we can do it:

class MyClass:
 count = 0 # Class variable

 def __init__(self):
 MyClass.count += 1 # Increment the count each time an object is created

Creating instances of the MyClass class
obj1 = MyClass()
obj2 = MyClass()
obj3 = MyClass()

Accessing the count of objects
print("Number of objects created:", MyClass.count) # Output: 3

In this example, each time an object of MyClass is created, the __init__() method is called, and it

increments the count class variable by 1. This way, we can keep track of the total number of objects

created from the class.

http://www.mijanrahman.com/

8. OOP Concepts in Python

 Prof. Dr. Md. Mijanur Rahman. www.mijanrahman.com
3 3

8.9.1 Non-Parameterized Constructor in Python

In Python, a non-parameterized constructor, also known as a default constructor, is a constructor

that doesn't accept any parameters other than self. It's called when an object of the class is

instantiated without passing any arguments. Non-parameterized constructors are typically used

when we don't need to initialize any attributes with specific values upon object creation.

Non-parameterized constructors are useful when we simply want to perform some initialization

tasks common to all instances of the class without needing any specific parameters.

Here's an example of a non-parameterized constructor:

class Car:
 def __init__(self):
 print("A car object is created.")

Creating an instance of the Car class
car1 = Car()

Output: "A car object is created."

Example: Class with a message display in the constructor

class Greeting:
 def __init__(self):
 print("Hello, welcome!")

Creating an instance of the Greeting class
greeting1 = Greeting()

Output: "Hello, welcome!"

Example: Class with initialization of class variables in a non-parameterized constructor

class Circle:
 def __init__(self):
 self.radius = 5 # Default radius for all circle objects
 self.area = 3.14 * self.radius ** 2

Creating an instance of the Circle class
circle1 = Circle()

Accessing attributes
print("Radius:", circle1.radius) # Output: 5
print("Area:", circle1.area) # Output: 78.5

Example: Class with non-parameterized constructor performing some initialization tasks

class Person:
 def __init__(self):

http://www.mijanrahman.com/

8. OOP Concepts in Python

 Prof. Dr. Md. Mijanur Rahman. www.mijanrahman.com
4 4

 self.name = "MM Rahman"
 self.age = 30
 self.gender = "Male"
 print("A person object is created with default values.")

Creating an instance of the Person class
person1 = Person()

Accessing attributes
print("Name:", person1.name) # Output: MM Rahman
print("Age:", person1.age) # Output: 30
print("Gender:", person1.gender) # Output: Male

Example: Class with default values for attributes

class Rectangle:
 def __init__(self):
 self.width = 10
 self.height = 5

Creating an instance of the Rectangle class
rectangle1 = Rectangle()

Accessing attributes
print("Width:", rectangle1.width) # Output: 10
print("Height:", rectangle1.height) # Output: 5

Example: Class with initialization of a list attribute

class ShoppingCart:
 def __init__(self):
 self.items = [] # Initializing an empty list for items

 def add_item(self, item):
 self.items.append(item)

Creating an instance of the ShoppingCart class
cart1 = ShoppingCart()

Adding items to the shopping cart
cart1.add_item("Apple")
cart1.add_item("Banana")

Accessing items in the cart
print("Items in the cart:", cart1.items) # Output: ['Apple', 'Banana']

http://www.mijanrahman.com/

8. OOP Concepts in Python

 Prof. Dr. Md. Mijanur Rahman. www.mijanrahman.com
5 5

8.9.2 Parameterized Constructor in Python

In Python, a parameterized constructor, also known as an initialized constructor, is a constructor

that accepts parameters other than just self. It allows you to initialize the attributes of an object

with specific values passed during object creation. Parameterized constructors are useful when you

want to customize the initialization of objects based on different input values.

Example: Simple class with a parameterized constructor

class Person:
 def __init__(self, name, age):
 self.name = name
 self.age = age

Creating an instance of the Person class with specific values
person1 = Person("Sumi", 25)

Accessing attributes
print("Name:", person1.name) # Output: Sumi
print("Age:", person1.age) # Output: 25

Example: Class with validation in the parameterized constructor

class Student:
 def __init__(self, name, age):
 if age < 0:
 raise ValueError("Age cannot be negative.")
 self.name = name
 self.age = age

Creating an instance of the Student class with validation
try:
 student1 = Student("Sumi", -20)
except ValueError as e:
 print(e) # Output: "Age cannot be negative."

Example: Class with multiple parameters in the constructor

class Point:
 def __init__(self, x, y):
 self.x = x
 self.y = y

Creating an instance of the Point class with specific coordinates
point1 = Point(3, 5)

Accessing attributes
print("X coordinate:", point1.x) # Output: 3
print("Y coordinate:", point1.y) # Output: 5

http://www.mijanrahman.com/

8. OOP Concepts in Python

 Prof. Dr. Md. Mijanur Rahman. www.mijanrahman.com
6 6

Example: Class with default values and parameterized constructor

class Rectangle:
 def __init__(self, length=1, width=1):
 self.length = length
 self.width = width

Creating instances of the Rectangle class with different parameters
rectangle1 = Rectangle()
rectangle2 = Rectangle(5)
rectangle3 = Rectangle(3, 4)

Accessing attributes
print("Rectangle 1:", rectangle1.length, rectangle1.width) # Output: 1 1
print("Rectangle 2:", rectangle2.length, rectangle2.width) # Output: 5 1
print("Rectangle 3:", rectangle3.length, rectangle3.width) # Output: 3 4

Example: Class with initialization of a list attribute in the constructor

class ShoppingList:
 def __init__(self, items):
 self.items = items

Creating an instance of the ShoppingList class with a list of items
shopping_list1 = ShoppingList(["Apples", "Bananas", "Oranges"])

Accessing the list attribute
print("Items in the shopping list:", shopping_list1.items) # Output: ['Apples', 'Bananas', 'Oranges']

8.9.3 Multiple Constructors in Single class

In Python, a class can't have more than one constructor in the traditional sense. However, we can

achieve similar functionality by using default parameter values or by using class methods as

alternative constructors.

Example using Default Parameter Values:

class MyClass:
 def __init__(self, x=None, y=None):
 if x is not None and y is not None:
 self.x = x
 self.y = y
 else:
 self.x = 0
 self.y = 0

Creating instances of MyClass with different initialization
obj1 = MyClass()

http://www.mijanrahman.com/

8. OOP Concepts in Python

 Prof. Dr. Md. Mijanur Rahman. www.mijanrahman.com
7 7

obj2 = MyClass(3, 5)

print("Object 1:", obj1.x, obj1.y) # Output: Object 1: 0 0
print("Object 2:", obj2.x, obj2.y) # Output: Object 2: 3 5

Example using Class Methods as Alternative Constructors:

class MyClass:
 def __init__(self, x, y):
 self.x = x
 self.y = y

 @classmethod
 def from_string(cls, str_val):
 x, y = map(int, str_val.split(","))
 return cls(x, y)

Creating instances of MyClass using different constructors
obj1 = MyClass(3, 5) # Using the default constructor
obj2 = MyClass.from_string("6,8") # Using the class method as an alternative constructor

print("Object 1:", obj1.x, obj1.y) # Output: Object 1: 3 5
print("Object 2:", obj2.x, obj2.y) # Output: Object 2: 6 8

8.9.4 Instance Variable and Instance Method

In Python, instance variables and instance methods are associated with instances of a class. They

are unique to each individual object created from the class.

Instance variables and instance methods play a crucial role in object-oriented programming in

Python, allowing for encapsulation and defining behavior specific to individual instances of a

class.

Instance Variable

An instance variable is a variable that is defined within a class and belongs to each instance of that

class individually. Each object or instance of the class has its own copy of the instance variables.

These variables are accessed using the syntax self.variable_name within instance methods.

Example: Instance Variables

class Circle:
 def __init__(self, radius):
 self.radius = radius

Creating instances of the Circle class
circle1 = Circle(5)
circle2 = Circle(3)

http://www.mijanrahman.com/

8. OOP Concepts in Python

 Prof. Dr. Md. Mijanur Rahman. www.mijanrahman.com
8 8

Accessing instance variables
print("Radius of circle1:", circle1.radius) # Output: Radius of circle1: 5
print("Radius of circle2:", circle2.radius) # Output: Radius of circle2: 3

In this example, radius is an instance variable of the Circle class. Each instance of the Circle class

(circle1 and circle2) has its own radius instance variable.

Instance Method

An instance method is a function defined within a class that operates on instances of that class. It

can access and modify instance variables and perform operations specific to each instance.

Instance methods are defined using the def keyword within the class and always take self as the

first parameter, which refers to the instance itself.

Example: Instance Methods

class Rectangle:
 def __init__(self, length, width):
 self.length = length
 self.width = width

 def calculate_area(self):
 return self.length * self.width

Creating an instance of the Rectangle class
rectangle1 = Rectangle(4, 5)

Calling the instance method
area = rectangle1.calculate_area()
print("Area of rectangle1:", area) # Output: Area of rectangle1: 20

In this example, calculate_area() is an instance method of the Rectangle class. It calculates the area

of the rectangle using the length and width instance variables of the object on which it is called.



http://www.mijanrahman.com/

	8.9 Constructor in Python
	8.9.1 Non-Parameterized Constructor in Python
	8.9.2 Parameterized Constructor in Python
	8.9.3 Multiple Constructors in Single class
	8.9.4 Instance Variable and Instance Method

