
Structured Programming

Lecture 24
File Management in C (2)

Prepared by________________________________

Md. Mijanur Rahman, Prof. Dr.
Dept. of Computer Science and Engineering

Jatiya Kabi Kazi Nazrul Islam University, Bangladesh
www.mijanrahman.com

CSE 06131223 CSE 06131224

http://www.mijanrahman.com/

Contents
F i l e M a n a g e m e n t i n C

• Introduction
• Why do we need File Handling in C?
• Types of Files in C
• C File Operations
• File Pointer in C
• Functions for File Handling
• Defining and Opening a File
• Closing a File
• I/O Operations on Files
• Reading from a File
• Writing to a File
• Error Handling during File Operations

File Management in C 2

I/O Operations on Files

• One a file is opened, reading out of or writing to it is accomplished the standard I/O
functions, listed below:

File Management in C 3

I/O Operations on Files
• Reading From a File: The file read operation in C can be performed using functions fscanf() or

fgets(). Both the functions performed the same operations as that of scanf and gets but with an
additional parameter, the file pointer. There are also other functions we can use to read from a
file. Such functions are listed below:

File Management in C 4

I/O Operations on Files

• Write to a file: The file write operations can be performed by the functions fprintf() and fputs()

with similarities to read operations. C programming also provides some other functions that can

be used to write data to a file such as:

File Management in C 5

getc and putc Functions
• The getc() and putc() functions in C are used for character-based input and output operations on

files. They are part of the standard I/O library (stdio.h).

• Both getc() and putc() are simple and efficient for reading and writing characters to files. They
can be useful for handling character-based input and output operations when dealing with files
in C.

• int getc(FILE *stream):
• Reads a character from the specified input stream.

• The stream parameter is a pointer to a FILE object representing the stream from which to read the
character.

• Returns the character read as an unsigned char cast to an int, or EOF (defined in stdio.h) if an error occurs
or if the end of the file is reached.

File Management in C 6

getc and putc Functions
• int getc(FILE *stream):

int ch;

FILE *fp;

fp = fopen("input.txt", "r");

if (fp != NULL) {

while ((ch = getc(fp)) != EOF) {

printf("%c", ch);

}

fclose(fp);

}

File Management in C 7

getc and putc Functions

• int putc(int character, FILE *stream):

• Writes a character to the specified output stream.

• The character parameter is the character to be written, specified as an int. It's typically cast to
unsigned char before being written.

• The stream parameter is a pointer to a FILE object representing the output stream to which the
character will be written.

• Returns the character written as an unsigned char cast to an int, or EOF if an error occurs.

File Management in C 8

getc and putc Functions

• int putc(int character, FILE *stream):

int ch;

FILE *fp;

fp = fopen("output.txt", "w");

if (fp != NULL) {

for (ch = 'A'; ch <= 'Z'; ch++) {

putc(ch, fp);

}

fclose(fp);

}

File Management in C 9

getc and putc Functions

• C Program using getc and putc
functions:

• Here's a simple C program that
reads from one file character by
character using getc() and writes
the content to another file using
putc().

File Management in C 10

getw and putw Functions

• The getw() and putw() functions in C are used for reading and writing binary data
(integers) to files. They are typically used for binary file I/O.

• int getw(FILE *stream):

• Reads a binary integer from the specified input stream.

• The stream parameter is a pointer to a FILE object representing the stream from
which to read the integer.

• Returns the integer read from the file.

File Management in C 11

getw and putw Functions

• int getw(FILE *stream):

int num;

FILE *fp;

fp = fopen("data.bin", "rb");

if (fp != NULL) {

num = getw(fp);

printf("Read number: %d\n", num);

fclose(fp);

}

File Management in C 12

getw and putw Functions

• int putw(int num, FILE *stream):

• Writes a binary integer to the specified output stream.

• The num parameter is the integer to be written.

• The stream parameter is a pointer to a FILE object representing the output stream to which the
integer will be written.

• Returns 0 on success or EOF if an error occurs.

File Management in C 13

getw and putw Functions

• int putw(int num, FILE *stream):

int num = 42;

FILE *fp;

fp = fopen("data.bin", "wb");

if (fp != NULL) {

putw(num, fp);

fclose(fp);

}

File Management in C 14

getw and putw Functions

• C Program using getw and putw
functions:

• Here's a simple C program that
demonstrates the usage of
getw() and putw() functions to
read and write integers to a
binary file.

File Management in C 15

fprintf and fscanf Functions

• The fprintf() and fscanf() functions in C are used for formatted input and output
operations with files. They are part of the standard I/O library (stdio.h).

• int fprintf(FILE *stream, const char *format, ...):

• Writes formatted data to the specified output stream.

• The stream parameter is a pointer to a FILE object representing the output stream to which the data
will be written.

• The format parameter is a format string that specifies how subsequent arguments are formatted and
written to the stream, similar to printf().

• Returns the number of characters written, or a negative value if an error occurs.

File Management in C 16

fprintf and fscanf Functions

• int fprintf(FILE *stream, const char *format, ...):

int num = 42;

double pi = 3.14159;

FILE *fp;

fp = fopen("output.txt", "w");

if (fp != NULL) {

fprintf(fp, "Integer: %d, Pi: %f\n", num, pi);

fclose(fp);

}

File Management in C 17

fprintf and fscanf Functions

• int fscanf(FILE *stream, const char *format, ...):

• Reads formatted data from the specified input stream.

• The stream parameter is a pointer to a FILE object representing the input stream
from which the data will be read.

• The format parameter is a format string that specifies how the input data should be
interpreted and read from the stream, similar to scanf().

• Returns the number of input items successfully matched and assigned, or EOF if the
end of the file is reached or an error occurs.

File Management in C 18

fprintf and fscanf Functions

• int fscanf(FILE *stream, const char *format, ...):

int num;

double pi;

FILE *fp;

fp = fopen("input.txt", "r");

if (fp != NULL) {

fscanf(fp, "Integer: %d, Pi: %lf\n", &num, &pi);

printf("Read Integer: %d, Pi: %f\n", num, pi);

fclose(fp);

}

File Management in C 19

fprintf and fscanf Functions

• C Program using fscanf and
fprintf functions:

• Here's is a simple C program
that demonstrates the usage of
fscanf() to read formatted data
from a file and fprintf() to write
formatted data to another file.

File Management in C 20

File Management in C 21

?THE END

