CSE 06131223 ¢ CSE 06131224

Structured Programming

Lecture 24
File Management in C (2)

Prepared by
(Ol=%{D] Md.-Mijanur Rahman, Prof. Dr.
| Dept. of Computer Science and Engineering
Jatiya Kabi Kazi Nazrul Islam University, Bangladesh

[]
@ = www.mijanrahman.com

http://www.mijanrahman.com/

C

Contents

File Management in C

/O Operations on Files

Reading from a File

Writing to a File

Error Handling during File Operations

/O Operations on Files

One a file is opened, reading out of or writing to it is accomplished the standard 1/O
functions, listed below:

Function name Operation

fopen() * Creates a new file for use.
* Opens an existing file for use.

fclose() * Closes a file which has been opened for use.
getc() * Reads a character from a file.
putc() * Writes a character to a file.
fprintf() * Writes a set of data values to a file.
fscanf() * Reads a set of data values from a file.
getw() * Reads an integer from a file.
putw() * Writes an integer to a file.
fseek() * Sets the position to a desired point in the file.
ftell() * Gives the current position in the file (in terms of

bytes from the start).
rewind() * Sets the position to the beginning of the file.

Reading From a File: The file read operation in C can be performed using functions fscanf() or
fgets(). Both the functions performed the same operations as that of scanf and gets but with an
additional parameter, the file pointer. There are also other functions we can use to read from a

file. Such functions are listed below:

Function Description
fscanf() Use formatted string and variable arguments list to take input from a file.
fgets() Input the whole line from the file.
fgetc() Reads a single character from the file.
fgetw() Reads a number from a file.

fread() Reads the specified bytes of data from a binary file.

Write to a file: The file write operations can be performed by the functions fprintf() and fputs()
with similarities to read operations. C programming also provides some other functions that can
be used to write data to a file such as:

Function Description

forintf() Similar to printf(), this function use formatted string and varible arguments list to
fprin | |
print output to the file.

fputs(). Prints the whole line in the file and a newline at the end.
fputc() Prints a single character into the file.
fputw() Prints a number to the file.

fwrite() This functions write the specified amount of bytes to the binary file.

getc and putc Functions

The getc() and putc() functions in C are used for character-based input and output operations on
files. They are part of the standard I/O library (stdio.h).

Both getc() and putc() are simple and efficient for reading and writing characters to files. They

can be useful for handling character-based input and output operations when dealing with files
in C.

int getc(FILE *stream):
Reads a character from the specified input stream.

The stream parameter is a pointer to a FILE object representing the stream from which to read the
character.

Returns the character read as an unsigned char cast to an int, or EOF (defined in stdio.h) if an error occurs
or if the end of the file is reached.

int getc(FILE *stream):

int ch;
FILE *fp;
fp = fopen("input.txt", "r");
if (fp 1= NULL) {
while ((ch = getc(fp)) != EOF) {
printf("%c", ch);
}
fclose(fp);

}

int putc(int character, FILE *stream):
Writes a character to the specified output stream.

The character parameter is the character to be written, specified as an int. It's typically cast to
unsigned char before being written.

The stream parameter is a pointer to a FILE object representing the output stream to which the
character will be written.

Returns the character written as an unsigned char cast to an int, or EOF if an error occurs.

int putc(int character, FILE *stream):

int ch;
FILE *fp;
fp = fopen("output.txt"”, "w");
if (fp != NULL) {
for (ch ='A'; ch <="'Z"; ch++) {
putc(ch, fp);
}
fclose(fp);

C Program using getc and putc
functions:

Here's a simple C program that
reads from one file character by
character using getc() and writes
the content to another file using

putc().

1

#include <stdio.h>

2~ int main() {

3

O 00 N o n b

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

FILE *inputFile, *outputFile;
int ch;

inputFile = fopen("input.txt", "r");
if (inputFile ==) {
perror("Error opening input file");

return 1;
}
outputFile = fopen("output.txt"”, "w");
if (outputFile ==) {
perror("Error opening output file");
fclose(inputFile);
return 1;
}

while ((ch = getc(inputFile)) != EOF) {
putc(ch, outputFile);

}

fclose(inputFile);

fclose(outputFile);

printf(“"File copied successfully!\n");

return 9;

getw and putw Functions

The getw() and putw() functions in C are used for reading and writing binary data
(integers) to files. They are typically used for binary file I/0O.

int getw(FILE *stream):
Reads a binary integer from the specified input stream.
The stream parameter is a pointer to a FILE object representing the stream from
which to read the integer.
Returns the integer read from the file.

int getw(FILE *stream):
int num;
FILE *fp;
fp = fopen("data.bin", "rb");
if (fp 1= NULL) {
num = getw(fp);
printf("Read number: %d\n", num);

fclose(fp);

int putw(int num, FILE *stream):
Writes a binary integer to the specified output stream.

The num parameter is the integer to be written.

The stream parameter is a pointer to a FILE object representing the output stream to which the
integer will be written.

Returns O on success or EOF if an error occurs.

int putw(int num, FILE *stream):
int num =42;
FILE *fp;
fp = fopen("data.bin", "wb");
if (fp != NULL) {
putw(num, fp);
fclose(fp);

C Program using getw and putw
functions:

Here's a simple C program that
demonstrates the usage of
getw() and putw() functions to
read and write integers to a
binary file.

1

3

O 0 N O 1 B

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

#include <stdio.h>
2~ int main() {

FILE *inputFile, *outputFile;
int num;

inputFile = fopen("input.bin", "rb");
if (inputFile ==) {
perror("Error opening input file");
return 1;

outputFile = fopen("output.bin”, "wb");
if (outputFile ==) {
perror("Error opening output file");
fclose(inputFile);
return 1;
}
while ((num = getw(inputFile)) != EOF) {
putw(num, outputFile);
}
fclose(inputFile);
fclose(outputFile);
printf("File copied successfully!\n");
return 9;

fprintf and fscanf Functions

The fprintf() and fscanf() functions in C are used for formatted input and output
operations with files. They are part of the standard 1/O library (stdio.h).

int fprintf(FILE *stream, const char *format, ...):
Writes formatted data to the specified output stream.

The stream parameter is a pointer to a FILE object representing the output stream to which the data
will be written.

The format parameter is a format string that specifies how subsequent arguments are formatted and
written to the stream, similar to printf().

Returns the number of characters written, or a negative value if an error occurs.

int fprintf(FILE *stream, const char *format, ...):
int num =42;
double pi = 3.14159;
FILE *fp;
fp = fopen("output.txt"”, "w");
if (fp 1= NULL) {
fprintf(fp, "Integer: %d, Pi: %f\n", num, pi);
fclose(fp);

int fscanf(FILE *stream, const char *format, ...):
Reads formatted data from the specified input stream.

The stream parameter is a pointer to a FILE object representing the input stream
from which the data will be read.

The format parameter is a format string that specifies how the input data should be
interpreted and read from the stream, similar to scanf().

Returns the number of input items successfully matched and assigned, or EOF if the
end of the file is reached or an error occurs.

int fscanf(FILE *stream, const char *format, ...):

int num;

double pi;

FILE *fp;

fp = fopen("input.txt", "r");

if (fp 1= NULL) {
fscanf(fp, "Integer: %d, Pi: %If\n", &num, &pi);
printf("Read Integer: %d, Pi: %f\n", num, pi);
fclose(fp);

C Program using fscanf and
fprintf functions:

Here's is a simple C program
that demonstrates the usage of
fscanf() to read formatted data
from a file and fprintf() to write
formatted data to another file.

#include <stdio.h>

«+ int main() {

FILE *inputFile, *outputFile;

int numl, num2;

double result;

inputFile fopen("input.txt", "r");
if (inputFile ==) {

perror("Error opening input file");

return 1;
}
outputFile = fopen("output.txt", "w");
if (outputFile ==) {
perror("Error opening output file");
fclose(inputFile);
return 1;
}
if (fscanf(inputFile, " ", &numl, &num2) == 2) {
result = numl + num2;
fprintf(outputFile, "Sum: ", result);
} else {
printf(“"Failed to read input from file.\n");
}
fclose(inputFile);
fclose(outputFile);

printf("Sum calculated and written to output.txt.

return ©;

43

