
Structured Programming

Lecture 25
File Management in C (3)

Prepared by________________________________

Md. Mijanur Rahman, Prof. Dr.
Dept. of Computer Science and Engineering

Jatiya Kabi Kazi Nazrul Islam University, Bangladesh
www.mijanrahman.com

CSE 06131223  CSE 06131224

http://www.mijanrahman.com/

Contents
F i l e M a n a g e m e n t i n C

• Introduction
• Why do we need File Handling in C?
• Types of Files in C
• C File Operations
• File Pointer in C
• Functions for File Handling
• Defining and Opening a File
• Closing a File
• I/O Operations on Files
• Reading from a File
• Writing to a File
• Error Handling during File Operations
• Program Examples

File Management in C 2

fseek and rewind Functions

• In C, fseek() and rewind() functions are used for file handling operations, particularly for
positioning the file pointer within a file.

• fseek(): This function is used to set the file position indicator for the specified stream
(FILE pointer) to a new position. It allows us to move the file pointer to a specific byte
offset within the file.

• rewind(): This function is used to move the file pointer to the beginning of the file. It is
equivalent to calling fseek() with an offset of 0 bytes from the beginning of the file.

• Both fseek() and rewind() are defined in the standard C library <stdio.h>.

File Management in C 3

fseek and rewind Functions

• fseek(): The syntax for fseek() is:

int fseek(FILE *stream, long int offset, int origin);

• stream: Pointer to a FILE object, which specifies the file to set the file position
indicator.

• offset: Number of bytes to offset from the position specified by origin.

• origin: It specifies the position from where the offset is added. It can take one of
three values: SEEK_SET (beginning of the file), SEEK_CUR (current position of the file
pointer), and SEEK_END (end of the file).

File Management in C 4

fseek and rewind Functions

• fseek():

• The return value of fseek() is zero if successful, and nonzero otherwise.

• For example:
FILE *fp;

fp = fopen("example.txt", "r");

fseek(fp, 10, SEEK_SET); // Moves the file pointer to 10th byte from the beginning of the file

File Management in C 5

fseek and rewind Functions

• rewind(): The syntax for rewind() is:

void rewind(FILE *stream);

• stream: Pointer to a FILE object, which specifies the file to rewind.

• For example:

FILE *fp;

fp = fopen("example.txt", "r");

rewind(fp); // Moves the file pointer to the beginning of the file

File Management in C 6

fseek and rewind
• Here's a simple C program that demonstrates

the usage of fseek() and rewind() functions:

• Make sure you have a file named example.txt in
the same directory as the program, containing
some text, to run this program.

• This program will first move the file pointer to
the 5th character from the beginning using
fseek(), then it will read and print characters till
the end of the file. After that, it uses rewind()
to move the file pointer back to the beginning
of the file and reads and prints characters from
the beginning.

File Management in C 7

Ftell Function

• In C, the ftell() function is used to determine the current position of the file pointer
within a file. It returns the current value of the file position indicator associated with the
specified stream (FILE pointer).

• The syntax for ftell() function is:

long int ftell(FILE *stream);
• stream: Pointer to a FILE object, which specifies the file whose current position is to be determined.

• The return value of ftell() is the current position of the file pointer if successful, and -1L
if an error occurs.

File Management in C 8

Ftell Function

• Here's a simple example
demonstrating the usage of ftell():

• This program opens a file named
example.txt, then uses ftell() to
determine the current position of the file
pointer within the file. It prints the
position to the console. Finally, it closes
the file.

File Management in C 9

Error Handling during File Operations

• Error handling during file operations in C is crucial to ensure the robustness and
reliability of the program, especially when dealing with file I/O.

• Here's how we can handle errors effectively:

• Check Return Values: Most file-related functions return a special value (NULL or -1, for
example) to indicate an error condition. Always check these return values after calling file-
related functions to detect errors.

• Print Error Messages: When an error occurs, print a descriptive error message to the
console or log file. This helps in debugging and provides valuable information for
understanding what went wrong.

File Management in C 10

Error Handling during File Operations
• Close Files Properly: If a file operation fails, close any open files before exiting the program.

This ensures that system resources are released properly and prevents potential resource
leaks.

• Use perror(): The perror() function can be used to print a descriptive error message
corresponding to the last error encountered during a file operation. It provides additional
information about the error, such as the error code and a description.

• Handle Specific Errors: Different file operations may encounter different types of errors.
Handle specific error conditions appropriately. For example, if a file cannot be opened due
to a permissions error, notify the user and possibly prompt for corrective action.

File Management in C 11

Error Handling: Example
• Here's an example demonstrating error

handling during file operations:

• In this example, if the file "nonexistentfile.txt"
does not exist or cannot be opened for
reading, fopen() will return NULL, indicating an
error. We then use perror() to print a
descriptive error message. Similarly, when
closing the file with fclose(), if an error occurs,
perror() is used to print the error message.

File Management in C 12

Program Examples

• Appending to a File:

File Management in C 13

Program Examples

• Counting Lines, Words, and
Characters in a File:

File Management in C 14

Program Examples

• Searching for a Specific String in a
File:

File Management in C 15

Program Examples

• Reading and Writing Binary Files:

• This program demonstrates reading and
writing binary files using structures. It
writes records of employees to a binary
file and then reads and prints them.

File Management in C 16

Program Examples

• Renaming a File:

• This program demonstrates renaming a
file from "oldfile.txt" to "newfile.txt".

File Management in C 17

Program Examples

• Deleting a File:

File Management in C 18

File Management in C 19

?THE END

