
1

Lecture 19

Finite-State Automata (6)
Md. Mijanur Rahman, Prof. Dr.

Dept. of Computer Science and Engineering, Jatiya Kabi Kazi Nazrul Islam University, Bangladesh.

www.mijanrahman.com

CSE 305

http://www.mijanrahman.com/

222

Contents
Finite State Automata

 Finite State Machine

 Types of Finite Automata

 Transition Function, Diagram and Table

 DFA with Definitions and Examples

 Extended Transition Function

 Language of a DFA

 Minimization of DFA

 NFA, e-NFA with Definitions and Examples

 Conversion of e-NFA into NFA (without e)

 The Equivalence of NFA’s with and without e-moves

 The Equivalence of DFA’s and NFA’s

 The Equivalence of DFA’s and NFA’s with e-Moves

 Two-way FA

 FA with Output: Moore machine, Mealy machine,

Equivalence

 Applications of FA

33

Two-way Finite Automaton

3

• In computer science, in particular in automata theory, a two-way finite automaton is

a finite automaton that is allowed to re-read its input.

• Two-way deterministic finite automaton (2DFA)

• Two-way nondeterministic finite automaton (2NFA)

44

Two-way Deterministic Finite Automaton (2DFA)

4

• A two-way deterministic finite automaton (2DFA) is an abstract machine, a

generalized version of the deterministic finite automaton (DFA) which can revisit

characters already processed.

• As in a DFA, there are a finite number of states with transitions between them based on

the current character, but each transition is also labelled with a value indicating

whether the machine will move its position in the input to the left, right, or stay at

the same position.

55

Two-way Deterministic Finite Automaton (2DFA)

5

Formal description:

• Formally, a two-way deterministic finite automaton (2DFA) can be described by the

following tuples:

M = (Q, , L, R, , q0, F)

Where:

Q: a finite set of states

: a finite set of input symbols

L: a left endmarker

R: a right endmarker

: Q × ( {L, R})  Q × {L, R}

q0: the start state

F: a set of final states

66

Two-way Nondeterministic Finite Automaton (2NFA)

6

• A two-way nondeterministic finite automaton (2NFA) may have multiple transitions

defined in the same configuration.

• Its transition function is defined as-

• Like a standard one-way NFA, a 2NFA accepts a string if at least one of the possible

computations is accepting. Like the 2DFAs, the 2NFAs also accept only regular

languages.

77

Example: Accepting string by 2DFA

7

Example-1: Consider the following transition

table of a 2DFA. Check the string "101001"

whether it is accepted by 2DFA or not?

Solution: Acceptability of the string using the

2DFA is illustrated below:

• Here we started from the initial state q0 and finally reached

to q1 (final state). so the string "101001" is accepted by the

2DFA.

88

Finite Automata with Output

8

• Finite automata have a limited capability of either accepting a string or rejecting a

string. Acceptance of a string was based on the reachability of a machine from starting

state to final state.

• Finite automata can also be used as an output device. A finite automata with

output is similar to finite automata (FA) except that the additional capability of

producing output.

• In a formal way it is also known as Finite State Machine (FSM) or Transducer.

• FSM = Transducer = Finite automata with output = Finite automata + Output

Capability

99

Finite Automata with Output

9

• Formal description of finite automata with output machine M is defined by 6-tuples are as follows:

M = (Q, Σ, δ, ∆, λ, q0)

Where, each tuple have its specification and meaning, as follows:

o Q: It represents the finite non-empty set of states.

o Σ: It presents the finite non-empty set of the input alphabet.

o δ : It represents the state transition function. The state transition function takes the current state from Q and an

input alphabet from Σ and returns the new set of output alphabets and the next state. Therefore, it can be seen as

a function which maps an ordered sequence of input alphabets into a corresponding sequence, or set, of output

events.

Q × Σ → Q is the next-state function.

o ∆: It presents the output alphabet.

o λ : It represent the output function. Its mathematically denotes as: Q → ∆

o q0: It is the initial state (which may be fixed or variable depends on machine behavior).

• If the FSM is given input letter a when in state q, it enters state δ(q, a). While in state q it produces

the output letter λ(q).

1010

Finite Automata with Output

10

• Finite automata with output machine have the following characteristic:

1. Finite automata with output machines do not have final state/states.

2. Machine generates an output on every input. The value of the output is a function of

current state and the current input.

3. Finite automata with output machines are characterized by two behaviors:

i. State transaction function (δ) [State transition function (δ) is also known as STF]

ii. Output function (λ) [Output function is also known as machine function (MAF)]

δ: Σ × Q → Q

λ: Σ × Q → O [For Mealy machine]

λ: Q → O [For Moore machine]

1111

Finite Automata with Output

11

• There are two types of finite automata with output:

1. Mealy machine: Output is associated with transition.
λ: Σ × Q → O
Set of output alphabet O can be different from the set of input alphabet Σ.

2. Moore machine: Output is associated with state.
λ: Q → O

1212

Mealy Machine

12

• In the Mealy machine, value of the output function depends on the current state q(t) and

current input i(t). The architecture of mealy machine is given below:

• In this, if the machine has N number of states, then it will require N-flip-flops, where M is the

smallest number such that N<=2M. In a mealy machine, if the input string of length n, then the

output string will also be of length n.

1313

Mealy Machine

13

• Formal Notations of Mealy Machine: It can be described by a 6 tuple (Q, ∑, O, δ, ∆, q0) as −

M = (Q, Σ, δ, ∆, λ, q0)

o Q : It represents the finite non-empty set of states.

o Σ: It presents the finite non-empty set of the input alphabet.

o δ : It represents the state transition function; where-

δ : Q × Σ → Q

o ∆: It presents the output alphabet.

o λ : It represent the output function. Its mathematically denotes as: Q × Σ → ∆

o q0: It is the initial state.

1414

Mealy Machine

14

Transition diagram of a mealy machine:

• To create a transition diagram for a given problem, apply the following steps:

1. First of all, determine the number of states needed for the given problem description.

2. Represent each state with the help of a circle.

3. From each state, draw an arrow causing event from the current state to the next state. If some
particular input, the machine remains on the same state, then add this transition with the help of
self-loop on the same state in the transition diagram.

4. At last, write the output values along with the input values on the paths between the states.

• In the mealy machine, each arc is labeled with two things:

1. First is the input symbol

2. The second is the output on the state.

1515

Mealy Machine

15

Transition table of a mealy machine:

• The output of the mealy machine depends on the current state and diagram. The transition table of

the mealy machine is given below:

1616

Moore Machine

16

• The output of the Moore machine depends only on the present state. The general

architecture of the Moore machine is:

• In this, if the machine has N no of states, then it will require N-flip-flops, where M is the smallest

number such that N<=2M. If the input string is of length n, then the output string will be of length n+1.

1717

Moore Machine

17

• Formal Notations of Moore Machine: It can be described by a 6 tuple (Q, ∑, O, δ, ∆, q0) as −

M = (Q, Σ, δ, ∆, λ, q0)

o Q : It represents the finite non-empty set of states.

o Σ: It presents the finite non-empty set of the input alphabet.

o δ : It represents the state transition function; where-

δ : Q × Σ → Q

o ∆: It presents the output alphabet.

o λ : It represent the output function. Its mathematically denotes as: Q → ∆

o q0: It is the initial state.

1818

Moore Machine

18

Transition diagram of Moore Machine:

• To create a transition diagram for a given problem, apply the following steps:

1. First of all, determine the number of states needed from the given problem description.

2. Represent each state with the help of a circle.

3. From each state, draw an arrow causing event from the current state to the next state. If some particular input,

the machine remains on the same state, then add this transition with the help of self-loop on the same state in

the transition diagram.

4. At last, write the value of the output in each state.

• In Moore machine, initial state is indicated by an arrow. Each state contains two things, first is the name

of the state, and the second is the output of the state.

1919

Moore Machine

19

Transition table of Moore Machine:

• In this transition table, we have input alphabet Σ = {0, 1}and output alphabet ∆ = {0, 1}. It takes input

as {0, 1} and produces output in the form of {a, b}. Moore machine transition table also has the same

input and output alphabet.

2020

Mealy Machine vs Moore Machine

20

• The following table highlights the points that differentiate a

Mealy Machine from a Moore Machine.

2121

Limitations of Finite Automata

21

• Examples of Limitations of finite automata:

• FA can only count finite input.

• There is no finite Automata that can find and recognize set of binary string of equal 0’s and 1’s (or

equal number of a’s and b’s).

• There is no finite Automata that can find and recognize the set of strings over ‘(‘ and ‘)’ that have

“balanced” parentheses.

• Input tape is read only and only memory it has is, state to state.

• It can have only string pattern.

• It can have only string pattern.

2222

Applications of Finite Automata

22

• We have several application based on finite automata and finite state machine. Some are

given below:

• A finite automata is highly useful to design Lexical Analyzers of a compiler.

• A finite automata is useful to design text editors.

• A finite automata is highly useful to design spell checkers.

• A finite automata is useful for recognizing the pattern using regular expressions.

• A finite automata is useful to design sequential circuit design (Transducer), using Mealy and

Moore Machines.

2323

Assignment

23

• Moore Machine and Mealy Machine

• Design a Moore Machine for 1’s complement of a binary number.

• Design a Mealy Machine for 2’s complement of a binary number.

2424

?THE END

24

