
1

Lecture 21

Regular Expressions (2)
Md. Mijanur Rahman, Prof. Dr.

Dept. of Computer Science and Engineering, Jatiya Kabi Kazi Nazrul Islam University, Bangladesh.

www.mijanrahman.com

CSE 305

http://www.mijanrahman.com/

222

Contents
Regular Expressions

 Regular Expressions

 Regular Languages

 Operation on Regular Languages

 Extensions of Regular Expressions

 Regular Sets and Properties of Regular Sets

 Identities Related to Regular Expressions

 Examples: Regular Expressions

 Conversion of Regular Expressions into Finite Automata

 Conversion of Finite Automata into Regular Expressions

 Pumping Lemma for Regular Languages

 Closure Properties of Regular Languages

 Relationship with other Computation Models

33

Conversion of Regular expression into Finite Automata

3

• As the regular expressions can be constructed from Finite Automata using the State
Elimination Method, the reverse method, state decomposition method can be used to
construct Finite Automata from the given regular expressions.

• Note: This method will construct NFA (with or without ε-transitions, depending on the
expression) for the given regular expression, which can be further converted to DFA
using NFA to DFA conversion.

• Thus, the method includes the following steps:

Step 1 − Construct a Transition diagram for a given RE by using Non-deterministic finite automata
(NFA) with ε moves.

Step 2 − Convert NFA with ε to NFA without ε.

Step 3 − Convert the NFA to the equivalent Deterministic Finite Automata (DFA).

44

Conversion of Regular expression into Finite Automata

4

State Decomposition Method:

• Theorem: Every language defined by a regular expression is also defined
by a Finite Automata.

• Proof: Let’s assume L = L(R) for a regular expression R. We prove that L =
L(M) for some ε-NFA M with:

1) Exactly one accepting state.

2) No incoming edges at the initial state.

3) No outgoing edges at the accepting state.

• The proof is done by structural induction on R by following the steps
below:

• Step 1: Create a starting state, say q1, and a final state, say q2. Label the
transition q1 to q2 as the given regular expression, R, as in Fig 1. But, if R is
(Q)*, Kleene’s closure of another regular expression Q, then create a single
initial state, which will also be the final state, as in Fig 2.

55

Conversion of Regular expression into Finite Automata

5

• Step 2: Repeat the following rules (state decomposition method) by considering the least precedency
regular expression operator first until no operator is left in the expression. Precedence of operators in
regular expressions is defined as Union < Concatenation < Kleene’s Closure.

• Union operator (+) can be eliminated by introducing parallel edges between the two states, as shown in
Fig.3.

• The concatenation operator (‘.’ or no operator at all) can be eliminated by introducing a new state
between the states, as shown in Fig.4.

66

Conversion of Regular expression into Finite Automata

6

• Kleene’s Closure (*) can be eliminated by introducing self-loops on states based on the following conditions:

1. If there is only one outgoing edge at the left-most state, i.e., A in transition A -> B, then introduce self-loop on
state A and label edge A to B as an ε-transition, as shown in Fig 5.

2. Else if there is only one incoming edge at the right-most state, i.e., B in transition A -> B, then introduce self-
loop on state B and label edge A to B as an ε-transition, as shown in Fig 6.

3. Else introduce a new state between two states having self-loop labeled as the expression. The new state will
have ε-transitions with the previous states as follows, as shown in Fig 7.

77

Conversion of Regular expression into Finite Automata

7

• Example: Construct Finite Automata for the regular expression, R = (ab + ba)*

Solution:

• Step 1: As the given expression, R, is of the form (Q)*, so we will create a single initial state
that will also be the final state, having self-loop labeled (ab + ba), as shown in Fig 8.

88

Conversion of Regular expression into Finite Automata

8

Step 2:

A. As the least precedency operator in the expression is a union(+). So we will introduce parallel
edges (parallel self-loops here) for ‘ab’ and ‘ba’, as shown in Fig 9.

B. Now we have two labels with concatenation operators (no operator mentioned between two
variables is concatenation), so we remove them one by one by introducing new states, q1 and q2 as
shown in Fig 10 and Fig 11. (Refer Fig 4 above)

Step 3: As no operators are left, we can say that Fig 11 is the required finite automata (NFA).

99

Conversion of Regular expression into Finite Automata

9

• Example : Design a FA from given regular expression 10 + (0 + 11)0* 1.

• Solution: First we will construct the transition diagram for a given regular expression.

Step-1: Step-2: Step-3:

1010

Conversion of Regular expression into Finite Automata

10

• Example : Design a FA from given regular expression 10 + (0 + 11)0* 1.

Step-4: Step-5:

• Now we have got NFA without ε. Now we will convert it into required DFA for that, we will first write a
transition table for this NFA.

1111

Conversion of Regular expression into Finite Automata

11

• Example : Design a FA from given regular expression 10 + (0 + 11)0* 1.

Transition table for the NFA:

The equivalent DFA will be:

1212

Conversion of Regular expression into Finite Automata

12

• Example: Construct the FA for regular expression 0*1 + 10.

NFA: DFA: ?

1313

Conversion of Finite Automata into Regular Expression

13

• There are two methods for converting a Finite Automata (FA) to Regular expression (RE).

• These methods are as follows −

• Arden's Theorem Method.

• State Elimination Method.

1414

Arden's Theorem Method

14

• The Arden's Theorem is useful for checking the equivalence of two regular expressions as well as in the
conversion of DFA to a regular expression.

• Let us see its use in the conversion of DFA to a regular expression.

• Following algorithm is used to build the regular expression form given DFA.

1. Let q1 be the initial state.

2. There are q2, q3, q4qn number of states. The final state may be some qj where j<= n.

3. Let αji represents the transition from qj to qi.

4. Calculate qi such that

qi = qj αji

If qj is a start state then we have:

qi = qj αji + ε

5. Similarly, compute the final state which ultimately gives the regular expression 'r'.

1515

Arden's Theorem Method: FA to RE

15

Example:

• Construct the regular expression for the given DFA

Solution:

• Let us write down the equations

q1 = q1 0 + ε

• Since q1 is the start state, so ε will be added, and the input 0 is coming to q1 from q1 hence we write-

State = source state of input × input coming to it

1616

Arden's Theorem Method: FA to RE

16

• Similarly,

q2 = q1 1 + q2 1

q3 = q2 0 + q3 (0+1)

• Since the final states are q1 and q2, we are interested in solving q1 and q2 only.

• Let us see q1 first

q1 = q1 0 + ε

• We can re-write it as

q1 = ε + q1 0

• Which is similar to R = Q + RP, and gets reduced to R = Q P*.

• Assuming R = q1, Q = ε, P = 0

1717

Arden's Theorem Method: FA to RE

17

• Assuming R = q1, Q = ε, P = 0

• We get

q1 = ε.(0)*

= 0* Applying (ε.R* = R*)

• Substituting the value into q2, we will get

q2 = q1 1 + q2 1

= 0* 1 + q2 1

= 0* 1 (1)* Applying (R = Q + RP → Q P*)

• The regular expression (for final states) is given by

r = q1 + q2

= 0* + 0* 1.1*

= 0* + 0* 1+ Applying (1.1* = 1+)

• Thus, the regular expression is 0* + 0* 1+

r = 0* + 0* 1+

1818

Arden's Theorem Method: FA to RE

18

Example:

• Construct the regular expression for the given FA.

Solution:

• Here the initial state and the final state is q1. Other states are q2 and q3.

• The equations for the three states q1, q2, and q3 are as follows:

q1 = q1a + q3a + € (€ move is because q1 is the initial state)
q2 = q1b + q2b + q3b
q3 = q2a

1919

Arden's Theorem Method: FA to RE

19

• Now, we will solve these three equations.
q2 = q1b + q2b + q3b

= q1b + q2b + (q2a)b (Substituting value of q3)
= q1b + q2(b + ab)
= q1b (b + ab)* (Applying Arden’s Theorem)

q1 = q1a + q3a + €
= q1a + q2aa + € (Substituting value of q3)
= q1a + q1b(b + ab*)aa + € (Substituting value of q2)
= q1(a + b(b + ab)*aa) + €
= € (a+ b(b + ab)*aa)*
= (a + b(b + ab)*aa)*

• Hence, the regular expression is (a + b(b + ab)*aa)*.

(a + b(b + ab)*aa)*

2020

State Elimination Method

20

• State elimination method to convert FA to regular expression:

• Step 1: If the start state is an accepting state or has transitions in, add a new non-accepting

start state and add an €-transition between the new start state and the former start state.

• Step 2: If there is more than one accepting state or if the single accepting state has

transitions out, add a new accepting state, make all other states non-accepting, and add an

€-transition from each former accepting state to the new accepting state.

• Step 3: For each non-start non-accepting state in turn, eliminate the state and update

transitions accordingly.

2121

Assignment

21

• State Elimination Method

• State elimination method to convert FA to regular expression.

• Example: Converting FA to RE

2222

?THE END

22

