
1

Lecture 22

Regular Expressions (3)
Md. Mijanur Rahman, Prof. Dr.

Dept. of Computer Science and Engineering, Jatiya Kabi Kazi Nazrul Islam University, Bangladesh.

www.mijanrahman.com

CSE 305

http://www.mijanrahman.com/

222

Contents
Regular Expressions

 Regular Expressions

 Regular Languages

 Operation on Regular Languages

 Extensions of Regular Expressions

 Regular Sets and Properties of Regular Sets

 Identities Related to Regular Expressions

 Examples: Regular Expressions

 Conversion of Regular Expressions into Finite Automata

 Conversion of Finite Automata into Regular Expressions

 Pumping Lemma for Regular Languages

 Closure Properties of Regular Languages

 Relationship with other Computation Models

33

Pumping Lemma for Regular Languages

3

• We know that regular languages and finite automata are closely related; however, finite
automata have a finite memory (number of states), while regular languages can be
infinite.

• We are now presenting a theorem to determine whether a given language is
regular or not.

• This theorem uses the pigeonhole principle and is known as ‘pumping lemma for
regular languages’, because some part of the string is pumped to the same state.

44

Pumping Lemma for Regular Languages

4

• We know that the language accepted by the finite automata is called Regular

Language.

• If we are given a language L and asked whether it is regular or not? So, to prove a

given Language L is not regular we use a method called Pumping Lemma.

• The term Pumping Lemma is made up of two words:

• Pumping: The word pumping refers to generate many input strings by pushing a

symbol in an input string again and again.

• Lemma: The word Lemma refers to intermediate theorem in a proof.

55

Pumping Lemma for Regular Languages

5

• Pumping Lemma is used to prove that given language is not regular. So, first of all we

need to know when a language is called regular. A language is called regular if:

• Language is accepted by finite automata.

• A regular grammar can be constructed to exactly generate the strings in a language.

• A regular expression can be constructed to exactly generate the strings in a

language.

Principle of Pumping Lemma:

• The pumping lemma states that all the regular languages have some special

properties. If we can prove that the given language does not have those properties,

then we can say that it is not a regular language.

66

Theorem: Pumping Lemma for Regular Languages

6

• Theorem:

o If L is an infinite regular language then there exists some positive integer n (pumping

length) such that any string wL has length greater than or equal to n. i.e. |w| >=n,

then string can be divided into three parts, w=xyz satisfying the following condition:

 |y| > 0

 |xy| <= n

 For all i 0, the string xyiz is also in L.

o |w| represents the length of string w and yi means that i copies of y are concatenated

together, y0 = .

o In simple terms, this means that if a string y is ‘pumped’, i.e., if y is inserted any

number of times, the resultant string still remains in L.

77

Theorem: Pumping Lemma for Regular Languages

7

Proof:

• If L is a regular language, then there must be a corresponding DFA that recognizes it Let us assume

that DFA M = (Q, , , q0, F}, where Q is a finite sequence of states, that is, Q = {qo, q1, q2, …, qn}.

• Let us consider a string x (over the set of alphabets, ) of length more than n. if we traverse x

starting from state qo (starting state) and if it is accepted by the finite automata, then the traversal

will end at some final state.

• Let us assume that the sequence of states is given by qo q1 qi qj qf. However, this sequence will

contain |w|+1 states as in order to accept one character input we require two states if loops are not

allowed.

• For example, to accept 1 we need one initial state A and one final state B as shown below.

Fig.1: FA to accept an input symbol 1.

88

Theorem: Pumping Lemma for Regular Languages

8

Proof:

• Thus, to accept |w| characters we need |w|+1 states if loops are not included. However, we have only |w|

states. Therefore, according to the pigeonhole principle, at least one state must be repeated. The

sequence of states may thus be assumed to be the following (say w = xyz):

• Such a sequence can be represented as the finite automata given below.

Fig.2: Finite automata to accept a sequence of characters.

99

Theorem: Pumping Lemma…

9

Proof:

• In the finite automata shown in Fig.2, we start from the initial state qo and reach the state qm after reading

x. We remain in the same state till we read y and then on encountering z, we reach the state qf, which is

the final state.

• In this manner, the string is accepted. Here, we should note that the length of |y| should be equal to or

more than 1, so that the loop is used. Therefore, every string of a language can be divided into three

substrings x, y, and z, such that ly| = 1 and |xy| = n.

• From these observations, we can conclude that:

• Similarly, we can say that:

• Hence, if any string w is contained in the language L then it can be divided into three substrings, namely,

x, y, and z such that w = xyz and xyiz is also present in L for i  0.

1010

Applying Pumping Lemma

10

• We will use above theorem to prove that given language is not regular. The steps needed to

prove that given languages is not regular are given below:

o Step1: Assume L is a regular language in order to obtain a contradiction. Let n be

the number of states of corresponding finite automata.

o Step2: Now chose a string w in L that has length n or greater; i.e. |w| >= n. Use

pumping lemma to write:

w = xyz with |xy| <= n and |y| = 0.

o Step3: Finally demonstrate that we cannot pumped by considering all ways of

dividing w into x, y and z, and for each such division find a value of I such that

xyiz  L. This contradicts our assumption; hence L is not regular.

• We prove xyiz  L by considering the length of xyz i.e. |xyiz| or by using the structure of

strings in L.

1111

Example: Applying Pumping Lemma

11

• Example

Let L= { anbn | n  0 }. By using pumping lemma show that L is not regular language.

• Solution:

o Step1: Assume L is a regular language in order to obtain contradiction. Let n be

the number of states in finite automata accepting L.

o Step2: Let w = anbn, then |w| = 2n > n. Using pumping lemma, we can

demonstrate w in three parts of xyz such that w = xyz with |xy|  n and |y| > 0.

o Step3: Now we want to find some i, for which xyiz  L. This means, a proof of

contradiction.

o There are three possibilities for y, we will consider all cases one by one and

show that given language contains some string not for { anbn | n  0 }.

1212

Example: Applying Pumping Lemma

12

• Case 1: The string y consists of only a’s i.e. y = ak (k  1).

We have w = xyz

w = anbn

• In given language we have equal numbers of a’s and b’s in w  L; so, it must satisfy this
condition. Let us take i = 0.

As xyz = anbn

xz = an-kbn

n-k  n

• So xz  L. This case is a contradiction.

1313

Example: Applying Pumping Lemma

13

• Case 2: The string y consists of only b’s i.e. y = bm (m  1).

We have w = xyz

w = anbn

• In given language, we have equal number of a’s and b’s in w  L, so it must satisfy this condition. Let us

take i=0.

As xyz = anbn

xz = anbn-m

Where n  n-m

• So xz  L. This case also gives contradiction.

1414

Example: Applying Pumping Lemma

14

• Case 3: The string y consists of both a’s and b’s i.e. y = akbm (k  1; m  1).

We have w = xyz

w = anbn

w = an-k akbm bn-m

• In given language we have equal number of a’s and b’s; so it must satisfy this condition. Let us take i=2.

xy2z = xyyz

= an-k akbm akbm bn-m here, x = an-k; y = akbm; z = bn-m.

• In this case, the string xyyz must have equal number of a’s and b’s; but they are out of order with

some b’s before a’s. Hence it is not a member of L, which contradicts our assumption.

• Thus, in all cases we get a contradiction. Therefore, L is not regular.

1515

Closure Properties of Regular Languages

15

• A set is closed under an operation if applying that operation to any members of the set always
yields a member of the set. For example, the positive integers are closed under addition and
multiplication, but not division.

• Thus, we use the term “Closure” when we talk about sets of things. If we have two regular languages
L1 and L2, and L is obtained by applying certain operations on L1, L2 then L is also regular.

• Closure Properties used in Regular Languages are as follows:

• Union

• Concatenation

• Complementation

• Intersection

• Reversal

• Difference

• Homomorphism

• Inverse Homomorphism

1616

Closure Properties of Regular Languages

16

• Kleene Closure

Let R is regular expression whose language is L. Now apply the Kleene closure on given regular
expression and language. So, R* is a regular expression whose language will become L*.

Example:

Suppose R= (a) then its language will be L= {a}. Now apply Kleene Closure on given regular
expression and language,

if R* = (a)* then its language will be L* = {e, a, aa, aaa, aaaa….}

So, L* is still a regular language. Thus Kleene clouser is satisfied.

1717

Closure Properties of Regular Languages

17

• Positive Closure

R is a regular expression whose language is L.R+is a regular expression whose language is L+

Example:

Suppose R= (a) then its language will be L= {a} . Now apply positive Closure on given regular
expression and language,

if R+ = (a) + then its language will be L+ = {a, aa, aaa, aaaa….}

So, L+ is still a regular language. Thus positive clouser is satisfied.

1818

Closure Properties of Regular Languages

18

• Complement

The complement of a language L is (Σ* – L). Where sigma (Σ) holds the input symbols use for generating

the language. So, complement of a regular language is always regular.

• Union

Let L1 and L2 be the languages of regular expressions R1 and R2, respectively. Then R1+R2 (R1 U R2) is

ALSO a regular expression whose language is L3 = (R1 U R2). L3 also belongs to regular language

• Concatenation

Let L1 and L2 be the languages of regular expressions R1 and R2, respectively. Then R1.R2 is ALSO a

regular expression whose language is L3 = (R1.R2). L3 also belongs to regular language

1919

Closure Properties of Regular Languages

19

• Intersection

Let L1 and L2 be the languages of regular expressions R1 and R2, respectively then the it a regular

expression whose language is L1 intersection L2.

• Set Difference Operator

Let L1 and L2 be the languages of regular expressions R1 and R2, respectively then it a regular expression

whose language is L1 – L2.= strings in L1 but not L2.

• Reverse Operator

Given language L, LRis the set of strings whose reversal is in L.

Example: L = {0, 01, 100};

LR ={0, 10, 001}.

LR still a regular language

2020

Closure Properties of Regular Languages

20

• Homomorphism

It is use to substitute (replace) the value of sigma with given delta values. Delta is nothing but a
symbol. Delta contains some values which are used to replace the sigma values.

Suppose “H” is delta then we can say

H(L) = {H(w) | w ∈L}

Example:

If L = {00, 101} and H(0) = “aa” and H(1) = “bb” then after substitution H(L) is given below

H(L) = {aaaa,bbaabb}

2121

Closure Properties of Regular Languages

21

• Inverse Homomorphism

It is the also a substitution technique like homomorphism but functionality of substitution is

opposite. It replace the value of Delta with sigma values. It is denoted by power of -1 i.e (H-1)

Example:

Suppose “H” is delta then we can say

If L = {aabb} and H(0) = “aa” and H(1) = “bb” then after substitution H-1(L) is given below

H-1(L) = {01}

Note: “aa” is replace with “0” and “bb” is replace with “1” in given language.

2222

Relationship between FA and RE

22

• The relationship between FA and RE is as follows −

• The above figure explains that it is easy to convert

• RE to Non-deterministic finite automata (NFA) with epsilon moves.

• NFA with epsilon moves to without epsilon moves.

• NFA without epsilon moves to Deterministic Finite Automata (DFA).

• DFA can be converted easily to RE.

2323

Relationship with other Computation Models

23

• Regular languages are less powerful than context-free languages which are generated

by context-free grammars and pushdown automata, and recursively enumerable languages

which are generated by Turing machines.

2424

?THE END

24

