
1

Lecture 23

Context-Free Grammars (1)
Md. Mijanur Rahman, Prof. Dr.

Dept. of Computer Science and Engineering, Jatiya Kabi Kazi Nazrul Islam University, Bangladesh.

www.mijanrahman.com

CSE 305

http://www.mijanrahman.com/

222

Contents
Context-Free Grammars

 Introduction to Context-Free Grammars (CFG)

 Formal Definition of Context-Free Grammars (CFG)

 Parse Trees

 Capabilities of CFG

 Relationship with other Computation Models

 Types of Context-Free Grammars

 Derivations Using Grammars

 Removal of Ambiguity

 Removal of Left Recursion

 Left Factoring

 Simplification of CFG

 Chomsky Normal Form (CNF)

33

Context-Free Grammars

3

• Context-free grammars (CFGs) are used to describe context-free languages. A context-free

grammar is a set of recursive rules used to generate patterns of strings.

• A context-free grammar can describe all regular languages and more, but they cannot

describe all possible languages.

• Context-free grammars are studied in fields of theoretical computer science, compiler design,

and linguistics. CFG’s are used to describe programming languages and parser programs

in compilers can be generated automatically from context-free grammars.

• Two parse trees that describe CFGs that generate the string "x + y * z".

44

Context-Free Grammars

4

• Context-free grammars can generate context-free languages. They do this by taking a

set of variables which are defined recursively, in terms of one another, by a set of

production rules.

• Context-free grammars are named as such because any of the production rules in the

grammar can be applied regardless of context—it does not depend on any other

symbols that may or may not be around a given symbol that is having a rule

applied to it.

55

Context-Free Grammars

5

• Context-free grammars have the following components:

1. A set of terminal symbols which are the characters that appear in the language/strings generated

by the grammar. Terminal symbols never appear on the left-hand side of the production rule and

are always on the right-hand side. For example: a, b, c,…, 0, 1,…..

2. A set of nonterminal symbols (or variables) which are placeholders for patterns of terminal

symbols that can be generated by the nonterminal symbols. These are the symbols that will always

appear on the left-hand side of the production rules, though they can be included on the right-hand

side. The strings that a CFG produces will contain only symbols from the set of nonterminal

symbols. For example: A, B, …, X, Y.

3. A set of production rules which are the rules for replacing nonterminal symbols. Production rules

have the following form: variable → string of variables and terminals. For example: XA, Aa

4. A start symbol which is a special nonterminal symbol that appears in the initial string generated

by the grammar. For example: S.

66

Context-Free Grammars

6

• To create a string from a context-free grammar, follow these steps:

1. Begin the string with a start symbol.

2. Apply one of the production rules to the start symbol on the left-hand side by

replacing the start symbol with the right-hand side of the production.

3. Repeat the process of selecting nonterminal symbols in the string, and replacing

them with the right-hand side of some corresponding production, until all

nonterminals have been replaced by terminal symbols. Note, it could be that not

all production rules are used.

• For comparison, a context-sensitive grammar can have production rules where both the left-

hand and right-hand sides may be surrounded by a context of terminal and nonterminal

symbols.

77

Formal Definition: Context-Free Grammars

7

• A context-free grammar can be described by a four-element tuple (V, T, P, S), where

• V is a finite set of variables (which are non-terminal);

• T is a finite set (disjoint from V) of terminal symbols;

• P is a set of production rules where each production rule maps a variable to a

string s∈(V∪T)*;

• S (which is in V) which is a start symbol.

88

Example: Context-Free Grammars

8

• Example:

Come up with a grammar that will generate the context-free (and also regular)

language that contains all strings with matched parentheses.

• There are many grammars that can do this task. This solution is one way to do it, but should

give you a good idea of if your (possibly different) solution works too.

Starting symbol: S

Production rules:

S → ()

S → SS

S → (S)

S → ϵ where ϵ is an empty string

and translate them into a single line: S → () | SS | (S) | ϵ.

99

Example: Context-Free Grammars

9

Example: Here is a context-free grammar that generates arithmetic expressions (subtraction, addition,
division, and multiplication).

• Start symbol = <expression>

• Terminal symbols = {+,−,∗,/,(,),number}, where “number” is any number

• Production rules:

1. <expression> → number

2. <expression> → (<expression>)

3. <expression> → <expression> + <expression>

4. <expression> → <expression> - <expression>

5. <expression> → <expression> * <expression>

6. <expression> → <expression> / <expression>

• This allows us to construct whatever expressions using multiplication, addition, division, and
subtraction we want. What these production rules tell us is that the result of any operation, for
example, multiplication, is also an expression (denoted, <expression>).

1010

Example: Context-Free Grammars

10

Example: Using the example above, show the steps of deriving the following
expression: (4+5)∗(2−6). Note, there are many ways to do this, but the solution below should
give you enough guidance to check if your derivation works.

• <expression> → 4 (using rule 1)
<expression> → 5 (using rule 1)
<expression> → 4 + 5 (using rule 3)
<expression> → (4 + 5) (using rule 2)
<expression> → 2 (using rule 1)
<expression> → 6 (using rule 1)
<expression> → 2 - 6 (using rule 4)
<expression> → (2 - 6) (using rule 2)
<expression> → (4 + 5) * (2 - 6) (using rule 5)

• Production rules:
1. <expression> → number

2. <expression> → (<expression>)

3. <expression> → <expression> + <expression>

4. <expression> → <expression> - <expression>

5. <expression> → <expression> * <expression>

6. <expression> → <expression> / <expression>

1111

Example: Context-Free Grammars

11

Example: Consider the following language

L= {wcwR | w € (a, b)*}

and

Production rules:

S → aSa

S → bSb

S → c

• Now check that abbcbba string can be derived from the given CFG.

S ⇒ aSa

S ⇒ abSba

S ⇒ abbSbba

S ⇒ abbcbba

• By applying the production S → aSa, S → bSb recursively and finally applying the production S → c,
we get the string abbcbba.

1212

Parse Trees

12

• Context-free grammars can be modeled as parse trees.

• In a parse tree, the nodes of the tree represent the symbols
and the edges represent the use of production rules. The leaves
of the tree are the end result (terminal symbols) that make up
the string the grammar is generating with that particular
sequence of symbols and production rules.

• Example:

• The parse trees below represent two ways to generate the string
"a + a - a" with the grammar

A→ A+A ∣ A−A ∣ a.

• Because this grammar can be implemented with multiple parse
trees to get the same resulting string, this is said to
be ambiguous.

1313

Capabilities of CFG

13

• There are the various capabilities of CFG:

• Context free grammar is useful to describe most of the programming languages.

• If the grammar is properly designed then an efficient parser can be constructed

automatically.

• Using the features of associatively & precedence information, suitable grammars

for expressions can be constructed.

• Context free grammar is capable of describing nested structures like: balanced

parentheses, matching begin-end, corresponding if-then-else's & so on.

1414

Relationship with other Computation Models

14

• A context-free grammar can be generated by pushdown automata just as regular languages can

be generated by finite state machines.

• Since all regular languages can be generated by CFGs, all regular languages can too be

generated by pushdown automata.

• Any language that can be generated using regular expressions can be generated by a context-

free grammar.

• The way to do this is to take the regular language, determine its finite state machine and write

production rules that follow the transition functions.

1515

Types of Context-Free Grammars

15

• Context Free Grammars (CFG) can be classified on the basis of following two

properties:

1. Based on number of strings it generates.

• If CFG is generating finite number of strings, then CFG is Non-Recursive (or the

grammar is said to be Non-recursive grammar)

• If CFG can generate infinite number of strings then the grammar is said to

be Recursive grammar

• During Compilation, the parser uses the grammar of the language to make a parse tree

(or derivation tree) out of the source code.

• The grammar used must be unambiguous. An ambiguous grammar must not be used

for parsing.

1616

Types of Context-Free Grammars

16

2. Based on number of derivation trees.

• If there is only 1 derivation tree then the CFG is unambiguous.

• If there are more than 1 derivation tree, then the CFG is ambiguous.

1717

Types of Context-Free Grammars

17

• Examples of Recursive Grammars:

1) S SaS

S b

• The language (set of strings) generated by the above grammar is: {b, bab, babab,…},

which is infinite.

2) SAa

AAb|c

• The language generated by the above grammar is :{ca, cba, cbba …}, which is infinite.

• Note: A recursive context-free grammar that contains no useless rules necessarily

produces an infinite language.

1818

Types of Context-Free Grammars

18

• Examples of Non-Recursive Grammars:

SAa

A b|c

• The language generated by the above grammar is: {ba, ca}, which is finite.

1919

Types of Context-Free Grammars

19

Types of Recursive Grammars:

• Based on the nature of the recursion in a recursive grammar, a recursive CFG can be

again divided into the following:

• Left Recursive Grammar (having left Recursion)

• Right Recursive Grammar (having right Recursion)

• General Recursive Grammar (having general Recursion)

• Note: A linear grammar is a context-free grammar that has at most one non-terminal in

the right hand side of each of its productions.

2020

Types of Context-Free Grammars

20

• Ambiguous Grammars and Unambiguous Grammars:

• Ambiguous grammar:

A CFG is said to ambiguous if there exists more than one derivation tree for the given input

string i.e., more than one Left Most Derivation Tree (LMDT) or Right Most Derivation Tree

(RMDT).

• Definition: G = (V,T,P,S) is a CFG is said to be ambiguous if and only if there exist a

string in T* that has more than one parse tree.

where V is a finite set of variables.

T is a finite set of terminals.

P is a finite set of productions of the form, A  α, where A is a variable and α ∈ (V ∪ T)* S is

a designated variable called the start symbol.

2121

Types of Context-Free Grammars

21

• Example of ambiguous grammar:

1. Let us consider this grammar : E E+E | id

• We can create 2 parse tree from this grammar to obtain a string id+id+id. The following are the

2 parse trees generated by left most derivation:

• Both the above parse trees are derived from same grammar rules but both parse trees are

different. Hence the grammar is ambiguous.

2222

Types of Context-Free Grammars

22

• Example of ambiguous grammar:

2. Let us now consider the following grammar:

• From the above grammar String 3*2+5 can be derived in 2 ways. Hence the grammar is

ambiguous.

2323

Types of Context-Free Grammars

23

• Ambiguous grammar:

• Note : Ambiguity of grammar is undecidable, i.e. there is no particular algorithm for

removing the ambiguity of grammar, but we can remove ambiguity by:

Disambiguate the grammar i.e., rewriting the grammar such that there is only one

derivation or parse tree possible for a string of the language which the grammar

represents.

2424

?THE END

24

