
1

Lecture 24

Context-Free Grammars (2)
Md. Mijanur Rahman, Prof. Dr.

Dept. of Computer Science and Engineering, Jatiya Kabi Kazi Nazrul Islam University, Bangladesh.

www.mijanrahman.com

CSE 305

http://www.mijanrahman.com/

222

Contents
Context-Free Grammars

 Introduction to Context-Free Grammars (CFG)

 Formal Definition of Context-Free Grammars (CFG)

 Parse Trees

 Capabilities of CFG

 Relationship with other Computation Models

 Types of Context-Free Grammars

 Derivations Using Grammars

 Removal of Ambiguity

 Removal of Left Recursion

 Left Factoring

 Simplification of CFG

 Chomsky Normal Form (CNF)

33

Derivations Using Grammars

3

• Derivation is a sequence of production rules. It is used to get the input string through

these production rules.

• During parsing we have to take two decisions. These are as follows:

• We have to decide the non-terminal which is to be replaced.

• We have to decide the production rule by which the non-terminal will be replaced.

• We have two options to decide which non-terminal to be replaced with production rule:

I. Left-most Derivation, and

II. Right-most Derivation

44

Derivations Using Grammars

4

• Left-most Derivation:

• In the left most derivation, the input is scanned and

replaced with the production rule from left to right. So in

left most derivatives we read the input string from left to

right.

• Example: Consider the following grammar-

S → aB / bA

S → aS / bAA / a

B → bS / aBB / b

• Let us consider a string w = aaabbabbba

• Now, let us derive the string w using leftmost derivation.

55

Derivations Using Grammars

5

• Left-most Derivation:

66

Derivations Using Grammars

6

• Right-most Derivation:

• In rightmost derivation, the input is scanned and replaced

with the production rule from right to left. So in rightmost

derivation, we read the input string from right to left.

• Example: Consider the following grammar-

S → aB / bA

S → aS / bAA / a

B → bS / aBB / b

• Let us consider a string w = aaabbabbba

• Now, let us derive the string w using right-most derivation.

77

Derivations Using Grammars

7

• Right-most Derivation:

88

Derivations Using Grammars

8

• Left-most derivation tree (Parse tree) = Right-most derivation tree (Parse tree).

• Hence, the given grammar is unambiguous.

99

Removal of Ambiguity

9

• We can remove ambiguity solely on the basis of the following two properties –

1. Precedence:

• If different operators are used, we will consider the precedence of the operators. The three

important characteristics are:

1. The level at which the production is present denotes the priority of the operator used.

2. The production at higher levels will have operators with less priority. In the parse tree, the nodes

which are at top levels or close to the root node will contain the lower priority operators.

3. The production at lower levels will have operators with higher priority. In the parse tree, the

nodes which are at lower levels or close to the leaf nodes will contain the higher priority operators.

1010

Removal of Ambiguity

10

2. Associativity:

• If the same precedence operators are in production, then we will have to consider the

associativity.

o If the associativity is left to right, then we have to prompt a left recursion in the

production. The parse tree will also be left recursive and grow on the left side.

+, -, *, / are left associative operators.

o If the associativity is right to left, then we have to prompt the right recursion in the

productions. The parse tree will also be right recursive and grow on the right side.

^ is a right associative operator.

1111

Removal of Ambiguity

11

• If the grammar is ambiguous then it is desirable to find an equivalent unambiguous CFG.

• Now we will discuss how to remove the ambiguity from the grammar. If a given grammar is in

the following form:

• Then the ambiguity from this grammar can be removed by using following equations:

• If the grammar has more than one ambiguous production than the same method can be applied

repetitively.

1212

Removal of Ambiguity

12

• Example: Remove the ambiguity from the following grammar:

SOLUTION:

• Now compare the given production rules

With

• We find the following similarity between them:

• So, the ambiguity can be removed by using following rules:

1313

Removal of Ambiguity

13

SOLUTION:

• We will get

(1)

(2)

• Now, if we put Eq.(1) in Eq.(2), we will obtain:

(3)

• Again apply the same method to remove ambiguity, compare Eq.(3) with Eq.(4):

(4)

1414

Removal of Ambiguity

14

SOLUTION:

• Thus, after comparison of Eq.(3) with Eq.(4), we get:

• Now the solution is:

(5)

(6)

• So, the final solution may be written as:

The given grammar:

1515

Removal of Left Recursion

15

• Left Recursion

• A CFG is called left recursive grammar, if the production starts with the same symbol as on its

left side. In other words, if the first symbol on the RHS of the production is similar to the

symbol on its LHS then the grammar is said to be left recursive.

where  and  are any combination of terminals and non-terminals.

• Removal of Left Recursion

• The left recursion from the corresponding grammar can be removed by using the following

equations:

where X1 is assumed to be a new non-terminal.

1616

Removal of Left Recursion

16

• Example: Remove the Left Recursion from the following grammar:

• SOLUTION

Compare the given production

with the equation:

We will find the following similarities between them:

• So, after the Remove the Left Recursion, the solution will be:

Using:

1717

Left Factoring

17

• The process in which uncommon parts of two or more productions are grouped

into one production is called the left factoring.

• For example, any production of the form:

Or

Can be replaced by:

1818

Left Factoring

18

• Example: Do left factoring in the following grammar-

A → aAB / aBc / aAc

Solution:

• Step-1:

A → aA’

A’ → AB / Bc / Ac

Again, this is a grammar with common prefixes.

• Step-2:

A → aA’

A’ → AD / Bc

D → B / c

This is a left factored grammar.

1919

Left Factoring

19

• Example: Do left factoring in the following grammar-

S → bSSaaS / bSSaSb / bSb / a

Solution:

• Step-1:

S → bSS’ / a

S’ → SaaS / SaSb / b

Again, this is a grammar with common prefixes.

• Step-2:

S → bSS’ / a

S’ → SaA / b

A → aS / Sb

This is a left factored grammar.

2020

?THE END

20

