
1

Lecture 25

Context-Free Grammars (3)
Md. Mijanur Rahman, Prof. Dr.

Dept. of Computer Science and Engineering, Jatiya Kabi Kazi Nazrul Islam University, Bangladesh.

www.mijanrahman.com

CSE 305

http://www.mijanrahman.com/

222

Contents
Context-Free Grammars

 Introduction to Context-Free Grammars (CFG)

 Formal Definition of Context-Free Grammars (CFG)

 Parse Trees

 Capabilities of CFG

 Relationship with other Computation Models

 Types of Context-Free Grammars

 Derivations Using Grammars

 Removal of Ambiguity

 Removal of Left Recursion

 Left Factoring

 Simplification of CFG

 Chomsky Normal Form (CNF)

33

Simplification of CFG

3

• To simplify a given grammar G, we try to eliminate the symbols and the

productions in the grammar which do not take part in derivation of sentences.

• The simplification does not reduce the language generation power of the CFG G, that

is, it will generate the same language after simplification as G generates.

• So, the purpose of simplifying the CFG is to eliminate all such productions that do not

participate in derivation of a string in the language.

44

Simplification of CFG

4

• The following symbols and productions are removed from the CFG:

1. We must eliminate all symbols which produce empty () directly or indirectly. All such

symbols are called nullable symbols or nullable non-terminals or nullable variables.

2. We must eliminate all productions of the form X  Y. These productions are called

unit productions.

3. We must eliminate all symbols that do not appear in derivation of any string from the start

symbol. Such symbols are called useless symbols and all such productions are called

useless productions.

• A symbol of CFG is called useful symbol if it appears in the derivation of at least

one string of the language generated by that CFG.

55

Removal of Null/Empty () Production

5

• Production of the form X   arc called empty or null productions. Thus, we can

define null productions as any production in the grammar which generates  directly

(in a single step) or indirectly (in many steps).

• It is also called  (or empty) production and the non-terminals which lead to 

(empty) are called nullable non-terminals or variables.

• If  is an element of the language generated by the grammar then we cannot remove ;

otherwise we can remove  productions.

66

Removal of Null/Empty () Production

6

• Procedure for Removing Null Production:

• The steps that need to be followed for removal of  productions are listed below:

• Step 1. Identify all the nullable non-terminals.

• Step 2. Remove all the productions which directly produce  (empty).

• Step 3. If there is a production of the form X   and  contains nullable non-

terminals then add all new productions which are obtained after deleting the subset

of the nullable non-terminals from .

77

Removal of Null/Empty () Production

7

Example: Remove the empty or null productions from the following grammars:

Solution:

• Applying the procedure as described earlier to remove null productions:

88

Removal of Null/Empty () Production

8

99

Removal of Unit Production

9

• Any production of the form A B is called a unit production. Thus, a unit production may

be defined as a production which contains single non-terminals on both sides.

• Unit productions can be removed without affecting the language generation power of the

grammar.

• Procedure:

• RHS non-terminal of the unit production can be replaced by its corresponding

production in the grammar if any is given; otherwise we can drop such

productions.

1010

Removal of Unit Production

10

Example: Remove unit productions from the grammar given below-

Solution:

• There are two unit productions:

• So, we can replace F from the RHS of the unit production by-

• So, the Production-3 becomes-

1111

Removal of Unit Production

11

• We can now replace T with Production-1 such that the next unit production becomes-

• Hence, the final productions after removing unit production are:

1212

Removal of Useless Productions

12

• Useless Symbols:

• The non-terminals which do not derive any terminal string from the starting symbol or which

do not appear in any sentential form are called useless symbols.

• Procedure:

• First identify all useless productions and symbols in a CFG and then remove all of them.

1313

Removal of Useless Productions

13

• Example: Remove all useless productions from the following grammar:

Solution:

• In this grammar, we can see that from the starting symbol E, we can reach B, but from B the

grammar is not able to generate the string. So, B is a useless symbol.

• Similarly, the non-terminal A is generating the string ‘a' but we are not able to reach A from the

starting symbol E. Hence, in the given grammar, B is a useless symbol, while Aa is a useless

production.

• Therefore, both are simply removed from the grammar, and after removal the grammar

becomes:

1414

Normal Forms of CFG

14

• We know that in a CFG, the RHS of a production may be any string of non-terminals and

terminals.

• Besides reducing the grammar it may also be useful for imposing certain restrictions on the

form of the remaining productions.

• There are certain standard ways given by different scientists for writing this reduced CFG.

These are called normal forms. So, when the productions in G satisfy certain restrictions

then G is said to be in a normal form.

• There are several normal forms which we can establish for CFG, such as Chomsky normal

form and Greibach normal form.

1515

Chomsky Normal Form (CNF)

15

• Noam Chomsky, the creator of the CFG, had imposed the restriction that the RHS of the

productions in the CFG can have at most two symbols.

• So, any CFG (free of  and unit productions) which follows the following restriction on the

production rules is said to be in Chomsky normal form (CNF).

• If a grammar is in CNF then the syntax tree or parse tree has at most two descendants at every

node: either two internal nodes or a single leaf, as-

where A, B, and C are the non-terminals and 'a' is a terminal.

1616

Chomsky Normal Form (CNF)

16

• Thus. we can say that CNF allows either two non-terminals or only one terminal on the RHS

of the production in CFG.

• Any CFG can he converted to CNF by imposing the following restrictions:

• Rules for converting a CFG into CNF: The rules that need to be followed for the conversion

of CFG into CNF are listed below.

1) The CFG should not contain null productions or unit productions. So, first remove

all null and unit productions.

2) Remove the terminals from the RHS if it contains more than one terminal. These

terminals may be replaced by a new non-terminal.

3) Restrict the number of non-terminals on the RHS. If any production contains more

than two non-terminals, then using the new non-terminal, we may convert the

production into CNF.

•

1717

Chomsky Normal Form (CNF)

17

• Example: Convert the following CFG into CNF.

• Solution:

• First, eliminate all null productions, unit productions, and useless productions.

• Step 1: Remove null productions.

X and Y are nullable non-terminals. Removal of null productions will give us the

following grammar.

A  01XY

X  1XY | 

Y YX0 | X | 

1818

Chomsky Normal Form (CNF)

18

• Step 2: Remove unit productions.

Here, only one unit production Y X is present. So, We may simply add the production

and delete

• Step 3: Apply some new non-terminals, if required, to the reduced grammar and restrict the

productions to be in CNF

A  01XY

X  1XY | 

Y  YX0 | X | 

1919

Chomsky Normal Form (CNF)

19

• Here, some of the productions remain unchanged because they are already in CNF. Now, we

have many productions and their RHS is too long. So, let us assume the following

substitutions:

• After substituting these productions we obtain the final CFG which is in CNF as follows:

2020

?THE END

20

