
Prof. Dr. Md. Mijanur Rahman. www.mijanrahman.com
1

Basic Programming with Python

Prepared By:

Professor Dr. Md. Mijanur Rahman
Department of Computer Science & Engineering
Jatiya Kabi Kazi Nazrul Islam University, Bangladesh.
www.mijanrahman.com

OOP Concepts in Python

CONTENTS
8.11. Polymorphism in Python.. 1

8.11.1 What is Polymorphism? ... 1

8.11.2 In-built Polymorphic Functions ... 2

8.11.3 Polymorphism with Class Methods ... 4

8.11.4 Polymorphism with Inheritance ... 5

8.11.5 Polymorphism with a Function and Objects .. 7

8.11. POLYMORPHISM IN PYTHON

8.11.1 What is Polymorphism?

Polymorphism in Python refers to the ability of different objects to be treated as instances of a
common interface. This means that different classes can define methods with the same name, but
with different implementations. When we call a method on an object, Python determines which
implementation of the method to execute based on the type of the object.

Two main types of polymorphism in Python:

1. Method Overriding: This occurs when a subclass provides a specific implementation of
a method that is already defined in its superclass. When we call the method on an instance

8. OOP Concepts in Python

 Prof. Dr. Md. Mijanur Rahman. www.mijanrahman.com
2 2

of the subclass, the subclass's implementation is executed instead of the superclass's
implementation.

class Animal:
 def sound(self):
 print("Animal makes a sound")

class Dog(Animal):
 def sound(self):
 print("Dog barks")

animal = Animal()
animal.sound() # Output: Animal makes a sound

dog = Dog()
dog.sound() # Output: Dog barks

2. Method Overloading: Unlike some other programming languages, Python does not
support method overloading by default (i.e., defining multiple methods with the same name
but different signatures). However, we can achieve a similar effect using default argument
values or variable arguments.

class Math:
 def add(self, a, b):
 return a + b

 def add(self, a, b, c):
 return a + b + c

math = Math()
print(math.add(2, 3))
print(math.add(2, 3, 4))

8.11.2 In-built Polymorphic Functions

In Python, there are several built-in functions that exhibit polymorphic behavior, meaning they can
operate on different types of objects and produce different results based on the type of the input.
Some of the key built-in polymorphic functions in Python include:

 len(): This function returns the length of a sequence (such as a string, list, tuple, or
dictionary). It works polymorphically on different types of sequences.

print(len("hello")) # Output: 5
print(len([1, 2, 3, 4])) # Output: 4
print(len((1, 2, 3))) # Output: 3
print(len({"a": 1, "b": 2})) # Output: 2 (number of keys)

 str(): The str() function converts an object into a string representation. It works
polymorphically on various types of objects.

8. OOP Concepts in Python

 Prof. Dr. Md. Mijanur Rahman. www.mijanrahman.com
3 3

print(str(123)) # Output: '123'
print(str([1, 2])) # Output: '[1, 2]'
print(str({"a": 1})) # Output: "{'a': 1}"

 max() and min(): These functions return the maximum and minimum values from a
sequence. They work polymorphically on different types of sequences as long as the
elements can be compared.

print(max(1, 2, 3)) # Output: 3
print(max([1, 2, 3, 4, 5])) # Output: 5
print(min("hello")) # Output: 'e'
print(min((5, 3, 9, 1))) # Output: 1

 sum(): The sum() function returns the sum of all elements in a sequence. It works

polymorphically on different types of sequences containing numeric values.
print(sum([1, 2, 3])) # Output: 6
print(sum((4, 5, 6))) # Output: 15

 sorted(): The sorted() function returns a new sorted list from the elements of any iterable.

It works polymorphically on different types of iterables.
print(sorted([3, 1, 2])) # Output: [1, 2, 3]
print(sorted("hello")) # Output: ['e', 'h', 'l', 'l', 'o']
print(sorted({3, 1, 2})) # Output: [1, 2, 3]

Python program demonstrating the use of some in-built polymorphic functions:
Function to demonstrate polymorphism using len()
def demo_len(obj):
 print(f"Length of {obj}: {len(obj)}")

Function to demonstrate polymorphism using str()
def demo_str(obj):
 print(f"String representation of {obj}: {str(obj)}")

Function to demonstrate polymorphism using max() and min()
def demo_max_min(seq):
 print(f"Maximum value in {seq}: {max(seq)}")
 print(f"Minimum value in {seq}: {min(seq)}")

Function to demonstrate polymorphism using sum()
def demo_sum(seq):
 print(f"Sum of elements in {seq}: {sum(seq)}")

Function to demonstrate polymorphism using sorted()
def demo_sorted(iterable):
 print(f"Sorted version of {iterable}: {sorted(iterable)}")

Main function

8. OOP Concepts in Python

 Prof. Dr. Md. Mijanur Rahman. www.mijanrahman.com
4 4

def main():
 # Different types of objects
 string_obj = "hello"
 list_obj = [1, 2, 3, 4, 5]
 tuple_obj = (5, 4, 3, 2, 1)
 set_obj = {3, 1, 2}
 dictionary_obj = {"a": 1, "b": 2, "c": 3}

 # Demonstrating polymorphism using various built-in functions
 demo_len(string_obj)
 demo_len(list_obj)
 demo_len(tuple_obj)
 demo_len(dictionary_obj)

 demo_str(123)
 demo_str([1, 2, 3])
 demo_str({"a": 1, "b": 2})

 demo_max_min([5, 3, 9, 1])
 demo_max_min("hello")
 demo_max_min({3, 1, 2})

 demo_sum([1, 2, 3, 4, 5])
 demo_sum((4, 5, 6))

 demo_sorted([3, 1, 2])
 demo_sorted("hello")
 demo_sorted({3, 1, 2})

if __name__ == "__main__":
 main()

8.11.3 Polymorphism with Class Methods

Polymorphism with class methods in Python involves defining methods in different classes with
the same name but different implementations. When these methods are called on instances of
different classes, Python determines which implementation to execute based on the type of the
object. This concept is fundamental to object-oriented programming and allows for more flexible
and modular code.

Here's an example demonstrating polymorphism with class methods in Python:
class Animal:
 def make_sound(self):
 pass

class Dog(Animal):
 def make_sound(self):

8. OOP Concepts in Python

 Prof. Dr. Md. Mijanur Rahman. www.mijanrahman.com
5 5

 print("Dog barks")

class Cat(Animal):
 def make_sound(self):
 print("Cat meows")

class Bird(Animal):
 def make_sound(self):
 print("Bird chirps")

Function to make an animal sound
def make_animal_sound(animal):
 animal.make_sound()

Main function
def main():
 dog = Dog()
 cat = Cat()
 bird = Bird()

 make_animal_sound(dog) # Output: Dog barks
 make_animal_sound(cat) # Output: Cat meows
 make_animal_sound(bird) # Output: Bird chirps

if __name__ == "__main__":
 main()

In this example:

 There is a base class Animal with a method make_sound() which serves as the common
interface.

 There are three subclasses Dog, Cat, and Bird, each with its own implementation of the
make_sound() method.

 The make_animal_sound() function takes an Animal object as input and calls its
make_sound() method.

 When make_animal_sound() is called with instances of Dog, Cat, and Bird,
polymorphism ensures that the appropriate make_sound() method associated with each
object is executed.

8.11.4 Polymorphism with Inheritance

Polymorphism with inheritance in Python refers to the ability of different classes to share a
common interface through inheritance while providing their own specific implementations of
methods. This allows objects of different classes to be treated interchangeably when interacting
with shared methods or functions, promoting code reuse and flexibility.

Here's an example demonstrating polymorphism with inheritance in Python:

8. OOP Concepts in Python

 Prof. Dr. Md. Mijanur Rahman. www.mijanrahman.com
6 6

class Shape:
 def area(self):
 pass

class Rectangle(Shape):
 def __init__(self, width, height):
 self.width = width
 self.height = height

 def area(self):
 return self.width * self.height

class Circle(Shape):
 def __init__(self, radius):
 self.radius = radius

 def area(self):
 return 3.14 * self.radius ** 2

Function to calculate the area of a shape
def calculate_area(shape):
 print("Area:", shape.area())

Main function
def main():
 rectangle = Rectangle(5, 4)
 circle = Circle(3)

 calculate_area(rectangle) # Output: Area: 20
 calculate_area(circle) # Output: Area: 28.26 (approximately)

if __name__ == "__main__":
 main()

In this example:

 There is a base class Shape with a method area() serving as the common interface.
 There are two subclasses Rectangle and Circle, each providing its own implementation of

the area() method to calculate the area of the respective shape.
 The calculate_area() function takes a Shape object as input and calls its area() method.
 When calculate_area() is called with instances of Rectangle and Circle, polymorphism

ensures that the appropriate area() method associated with each object is executed.

8. OOP Concepts in Python

 Prof. Dr. Md. Mijanur Rahman. www.mijanrahman.com
7 7

8.11.5 Polymorphism with a Function and Objects

Polymorphism in Python can also be achieved through functions that accept objects of different
classes, treating them uniformly through a shared interface. Here's an example demonstrating
polymorphism with a function and objects in Python:

class Vehicle:
 def move(self):
 pass

class Car(Vehicle):
 def move(self):
 return "Car is driving"

class Bicycle(Vehicle):
 def move(self):
 return "Bicycle is cycling"

class Boat(Vehicle):
 def move(self):
 return "Boat is sailing"

Function to make a vehicle move
def make_vehicle_move(vehicle):
 if isinstance(vehicle, Vehicle):
 print(vehicle.move())
 else:
 print("Not a valid vehicle object")

Main function
def main():
 car = Car()
 bicycle = Bicycle()
 boat = Boat()

 make_vehicle_move(car) # Output: Car is driving
 make_vehicle_move(bicycle) # Output: Bicycle is cycling
 make_vehicle_move(boat) # Output: Boat is sailing

 # Passing an invalid object
 make_vehicle_move("Airplane") # Output: Not a valid vehicle object

if __name__ == "__main__":
 main()

In this example:

 There is a base class Vehicle with a method move() serving as the common interface.

8. OOP Concepts in Python

 Prof. Dr. Md. Mijanur Rahman. www.mijanrahman.com
8 8

 There are three subclasses Car, Bicycle, and Boat, each providing its own implementation
of the move() method.

 The make_vehicle_move() function accepts an object as input and checks if it's an instance
of Vehicle. If it is, it calls the move() method of that object.

 When make_vehicle_move() is called with instances of Car, Bicycle, and Boat,
polymorphism ensures that the appropriate move() method associated with each object is
executed.

 If an object that is not an instance of Vehicle is passed to make_vehicle_move(), it outputs
a message indicating that it's not a valid vehicle object.

