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PDA Acceptance

3

• A language can be accepted by Pushdown automata using two approaches:

1. Acceptance by Final State: The PDA is said to accept its input by the final
state if it enters any final state in zero or more moves after reading the
entire input.

2. Acceptance by Empty Stack: On reading the input string from the initial
configuration for some PDA, the stack of PDA gets empty.



44

PDA Acceptance

4

• Acceptance by Final State:

Let P =(Q, ∑, Γ, δ, q0, Z, F) be a PDA. The language acceptable by the final state can
be defined as:

L(PDA) = {w | (q0, w, Z) ⊢* (p, ε, ε), q ∈ F}

• If there is a language L = L (P1) for some PDA P1 then there is a PDA P2 such that L = N(P2).
That means language accepted by final state PDA is also acceptable by empty stack PDA.
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PDA Acceptance

5

• Acceptance by Empty Stack:

Let P =(Q, ∑, Γ, δ, q0, Z, F) be a PDA. The language acceptable by empty stack can
be defined as:

N(PDA) = {w | (q0, w, Z) ⊢* (p, ε, ε), q ∈ Q}

• If L = N(P1) for some PDA P1, then there is a PDA P2 such that L = L(P2). That means the
language accepted by empty stack PDA will also be accepted by final state PDA.
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Example

6

• Example: Construct a PDA that accepts the language L over {0, 1} by empty stack which

accepts all the string of 0's and 1's in which a number of 0's are twice of number of 1's.

• Solution:

• There are two parts for designing this PDA:

• If 1 comes before any 0's

• If 0 comes before any 1's.

• We are going to design the first part i.e. 1 comes before 0's. The logic is that read single 1 and

push two 1's onto the stack. Thereafter on reading two 0's, POP two 1's from the stack. The δ

can be

δ(q0, 1, Z) = (q0, 11, Z) Here Z represents that stack is empty

δ(q0, 0, 1) = (q0, ε)
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Example

7

• Now, consider the second part i.e. if 0 comes

before 1's. The logic is that read first 0, push it

onto the stack and change state from q0 to q1.

[Note that state q1 indicates that first 0 is read and

still second 0 has yet to read].

• Being in q1, if 1 is encountered then POP 0. Being

in q1, if 0 is read then simply read that second 0

and move ahead. The δ will be:

δ(q0, 0, Z) = (q1, 0Z)

δ(q1, 0, 0) = (q1, 0)

δ(q1, 0, Z) = (q0, ε)

(indicate that one 0 and one 1 is already read, so simp

ly read the second 0)

δ(q1, 1, 0) = (q1, ε)

• Now, summarize the complete PDA 

for given L is:

δ(q0, 1, Z) = (q0, 11Z)

δ(q0, 0, 1) = (q1, ε)

δ(q0, 0, Z) = (q1, 0Z)

δ(q1, 0, 0) = (q1, 0)

δ(q1, 0, Z) = (q0, ε)

δ(q0, ε, Z) = (q0, ε) ACCEPT state
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Non-deterministic PDA

8

• The non-deterministic pushdown automata is very much similar to NFA. We will discuss some

CFGs which accepts NPDA.

• The CFG which accepts deterministic PDA accepts non-deterministic PDAs as well.

• Similarly, there are some CFGs which can be accepted only by NPDA and not by DPDA.

• Thus NPDA is more powerful than DPDA.
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Non-deterministic PDA

9

• Example: Design PDA for Palindrome strips.

Solution:

• Suppose the language consists of string L = {aba, aa, bb, bab, bbabb, aabaa, ......]. The string

can be odd palindrome or even palindrome.

• The logic for constructing PDA is that we will push a symbol onto the stack till half of the

string then we will read each symbol and then perform the pop operation.

• We will compare to see whether the symbol which is popped is similar to the symbol which is

read.

• Whether we reach to end of the input, we expect the stack to be empty.
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Non-deterministic PDA

10

• This PDA is a non-deterministic PDA because finding the mid for the given string and reading

the string from left and matching it with from right (reverse) direction leads to non-deterministic

moves. Here is the ID.

• Simulation of the string “abaaba”:

δ(q1, abaaba, Z) Apply rule 1

⊢ δ(q1, baaba, aZ) Apply rule 5

⊢ δ(q1, aaba, baZ) Apply rule 4

⊢ δ(q1, aba, abaZ) Apply rule 7

⊢ δ(q2, ba, baZ) Apply rule 8

⊢ δ(q2, a, aZ) Apply rule 7

⊢ δ(q2, ε, Z) Apply rule 11

⊢ δ(q2, ε) Accept
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PDA & CFG

11

• If a grammar G is context-free, we can build an equivalent nondeterministic PDA which

accepts the language that is produced by the context-free grammar G. A parser can be built for

the grammar G.

• Also, if P is a pushdown automaton, an equivalent context-free grammar G can be constructed

where

L(G) = L(P)
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PDA & CFG

12

Algorithm to find PDA corresponding to a given CFG

• Input − A CFG, G = (V, T, P, S)

• Output − Equivalent PDA, P = (Q, ∑, S, δ, q0, I, F)

• Procedure:

Step 1 − Convert the productions of the CFG into GNF.

Step 2 − The PDA will have only one state {q}.

Step 3 − The start symbol of CFG will be the start symbol in the PDA.

Step 4 − All non-terminals of the CFG will be the stack symbols of the PDA and all

the terminals of the CFG will be the input symbols of the PDA.

Step 5 − For each production in the form A → aX where a is terminal and A, X are

combination of terminal and non-terminals, make a transition δ (q, a, A).
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PDA & CFG

13

• Example: Convert the following grammar to a PDA that accepts the same language.

S → 0S1 | A

A→ 1A0 | S | ε

• Solution: The CFG can be first simplified by eliminating unit productions:

S → 0S1 | 1S0 | ε

• Now we will convert this CFG to GNF:

S → 0SX | 1SY | ε

X → 1

Y → 0

• The PDA can be:
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PDA & CFG

14

• Example: Construct PDA for the given CFG, and test whether 0104 is acceptable
by this PDA.

S → 0BB

B → 0S | 1S | 0

• Solution: The PDA can be given as:

A = {(q), (0, 1), (S, B, 0, 1), δ, q, S, ?}

The production rule δ can be:

• Testing 0104 i.e. 010000 against PDA:

• Thus 0104 is accepted by the PDA.
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?THE END
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