

Lecture 27 Pushdown Automata (2)

Md. Mijanur Rahman, Prof. Dr.

Dept. of Computer Science and Engineering, Jatiya Kabi Kazi Nazrul Islam University, Bangladesh. www.mijanrahman.com

Pushdown Automata (PDA)

Components of PDA

Formal Definition of PDA

Instantaneous Description and Notation

Examples

PDA Acceptance Non-deterministic PDA PDA & CFG

PDA Acceptance

- A language can be accepted by Pushdown automata using two approaches:
	- **1. Acceptance by Final State:** The PDA is said to accept its input by the final state if it enters any final state in zero or more moves after reading the entire input.
	- **2. Acceptance by Empty Stack:** On reading the input string from the initial configuration for some PDA, the stack of PDA gets empty.

PDA Acceptance

• **Acceptance by Final State:**

Let $P = (Q, \sum, \Gamma, \delta, q0, Z, F)$ be a PDA. The language acceptable by the final state can be defined as:

 $L(PDA) = \{ w \mid (q0, w, Z) \vdash^{*} (p, \varepsilon, \varepsilon), q \in F \}$

• If there is a language $L = L (P1)$ for some PDA P1 then there is a PDA P2 such that $L = N(P2)$. That means language accepted by final state PDA is also acceptable by empty stack PDA.

PDA Acceptance

• **Acceptance by Empty Stack:**

Let $P = (Q, \sum, \Gamma, \delta, q0, Z, F)$ be a PDA. The language acceptable by empty stack can be defined as:

 $N(PDA) = \{ w \mid (q0, w, Z) \vdash^{*} (p, \varepsilon, \varepsilon), q \in Q \}$

• If $L = N(P1)$ for some PDA P1, then there is a PDA P2 such that $L = L(P2)$. That means the language accepted by empty stack PDA will also be accepted by final state PDA.

Example

- **Example:** Construct a PDA that accepts the language L over {0, 1} by empty stack which accepts all the string of 0's and 1's in which a number of 0's are twice of number of 1's.
- **Solution:**
- There are two parts for designing this PDA:
	- If 1 comes before any 0's
	- If 0 comes before any 1's.
- We are going to design the first part i.e. 1 comes before 0's. The logic is that read single 1 and push two 1's onto the stack. Thereafter on reading two 0's, POP two 1's from the stack. The δ can be

 $\delta(q0, 1, Z) = (q0, 11, Z)$ Here Z represents that stack is empty $\delta(q0, 0, 1) = (q0, \varepsilon)$

Example

- Now, consider the second part i.e. if 0 comes before 1's. The logic is that read first 0, push it onto the stack and change state from q0 to q1. [Note that state q1 indicates that first 0 is read and still second 0 has yet to read].
- Being in q1, if 1 is encountered then POP 0. Being in q1, if 0 is read then simply read that second 0 and move ahead. The δ will be:

 $\delta(q0, 0, Z) = (q1, 0Z)$ $\delta(q1, 0, 0) = (q1, 0)$ $\delta(q1, 0, Z) = (q0, \varepsilon)$ (indicate that one 0 and one 1 is already read, so simp ly read the second 0) $\delta(q1, 1, 0) = (q1, \varepsilon)$

• Now, summarize the complete PDA for given L is: $\delta(q0, 1, Z) = (q0, 11Z)$ $\delta(q0, 0, 1) = (q1, \varepsilon)$ $\delta(q0, 0, Z) = (q1, 0Z)$ $\delta(q1, 0, 0) = (q1, 0)$ $\delta(q1, 0, Z) = (q0, \varepsilon)$ δ(q0, ε, Z) = (q0, ε) ACCEPT state

Non-deterministic PDA

- The non-deterministic pushdown automata is very much similar to NFA. We will discuss some CFGs which accepts NPDA.
- The CFG which accepts deterministic PDA accepts non-deterministic PDAs as well.
- Similarly, there are some CFGs which can be accepted only by NPDA and not by DPDA.
- Thus NPDA is more powerful than DPDA.

Non-deterministic PDA

• **Example: Design PDA for Palindrome strips.**

Solution:

- Suppose the language consists of string $L = \{aba, aa, bb, bab, bbabb, aabaa,\}$. The string can be odd palindrome or even palindrome.
- The logic for constructing PDA is that we will push a symbol onto the stack till half of the string then we will read each symbol and then perform the pop operation.
- We will compare to see whether the symbol which is popped is similar to the symbol which is read.
- Whether we reach to end of the input, we expect the stack to be empty.

Non-deterministic PDA

• This PDA is a non-deterministic PDA because finding the mid for the given string and reading the string from left and matching it with from right (reverse) direction leads to non-deterministic moves. Here is the ID. 1. $\delta(q1, a, Z) = (q1, aZ)$

 $\delta(q_1, \text{abaab}, Z)$ Apply rule 1 $\vdash \delta(q_1, \text{baaba}, aZ)$ Apply rule 5 $\vdash \delta(q_1, aaba, baZ)$ Apply rule 4 $\vdash \delta(q_1, \text{aba}, \text{abaZ})$ Apply rule 7 $\vdash \delta(q2, ba, baZ)$ Apply rule 8 $\vdash \delta(q2, a, aZ)$ Apply rule 7 $\vdash \delta(q2, \varepsilon, Z)$ Apply rule 11 $\vdash \delta(q2, \varepsilon)$ Accept

2. $\delta(q0, b, Z) = (q1, bZ)$ 3. $\delta(q0, a, a) = (q1, aa)$ 4. $\delta(q1, a, b) = (q1, ab)$ 5. $\delta(q1, a, b) = (q1, ba)$ 6. $\delta(q1, b, b) = (q1, bb)$ 7. $\delta(q1, a, a) = (q2, \varepsilon)$ **8.** $\delta(q1, b, b) = (q2, \varepsilon)$ 9. $\delta(q2, a, a) = (q2, \varepsilon)$ 10. $\delta(q2, b, b) = (q2, \varepsilon)$ 11. $\delta(q2, \epsilon, Z) = (q2, \epsilon)$ —

Pushing the symbols onto the stack

Popping the symbols on reading the same kind of symbol

- If a grammar **G** is context-free, we can build an equivalent nondeterministic PDA which accepts the language that is produced by the context-free grammar **G**. A parser can be built for the grammar **G**.
- Also, if **P** is a pushdown automaton, an equivalent context-free grammar G can be constructed where

 $L(G) = L(P)$

Algorithm to find PDA corresponding to a given CFG

- **Input** $-A$ CFG, G = (V, T, P, S)
- **Output** Equivalent PDA, $P = (Q, \Sigma, S, \delta, q_0, I, F)$
- Procedure:

Step 1 − Convert the productions of the CFG into GNF.

Step 2 – The PDA will have only one state $\{q\}$.

Step 3 − The start symbol of CFG will be the start symbol in the PDA.

Step 4 − All non-terminals of the CFG will be the stack symbols of the PDA and all the terminals of the CFG will be the input symbols of the PDA.

Step 5 − For each production in the form $A \rightarrow aX$ where a is terminal and A, X are combination of terminal and non-terminals, make a transition **δ (q, a, A)**.

- **Example:** Convert the following grammar to a PDA that accepts the same language. $S \rightarrow 0S1 \mid A$
	- $A \rightarrow 1A0 | S | \epsilon$
- **Solution:** The CFG can be first simplified by eliminating unit productions:

 $S \rightarrow 0S1$ | 1S0 | ε

• Now we will convert this CFG to GNF: $S \rightarrow 0SX$ | 1SY | ε $X \rightarrow 1$ $Y \rightarrow 0$

• **The PDA can be:**

R1: $\delta(q, \varepsilon, S) = \{(q, 0SX) | (q, 1SY) | (q, \varepsilon)\}\$ R2: $\delta(q, \varepsilon, X) = \{(q, 1)\}\$ R3: $\delta(q, \varepsilon, Y) = \{(q, \theta)\}\$ **R4:** $\delta(q, \theta, \theta) = \{(q, \epsilon)\}\$ R5: $\delta(q, 1, 1) = \{(q, \epsilon)\}\$

- **Example: Construct PDA for the given CFG, and test whether 010⁴ is acceptable by this PDA.**
	- $S \rightarrow 0BB$
	- $B \rightarrow 0S \mid 1S \mid 0$
- **Solution:** The PDA can be given as:

 $A = \{(q), (0, 1), (S, B, 0, 1), \delta, q, S, ?\}$

The production rule δ can be:

R1: $\delta(q, \epsilon, S) = \{(q, \theta BB)\}\$ **R2:** $\delta(q, \varepsilon, B) = \{(q, \theta S) | (q, 1S) | (q, \theta)\}\$ R3: $\delta(q, \theta, \theta) = \{(q, \epsilon)\}\$ **R4:** $\delta(q, 1, 1) = \{(q, \epsilon)\}\$

• Testing 010⁴ i.e. 010000 against PDA:

• Thus 010⁴ is accepted by the PDA.

