
Programming with C++

Lecture 1
Course Overview

Prepared by________________________________

Prof. Dr. Md. Mijanur Rahman
Dept. of Computer Science and Engineering

Jatiya Kabi Kazi Nazrul Islam University, Bangladesh
Email: mijan@jkkniu.edu.bd

Web: mijanrahman.com

CSE 232

Contents
C o u r s e O v e r v i e w

• About This Course

• Course Outcomes

• About Class and Course Evaluation

• The Grading System

• Course Contents

• Course Objectives

• Course Prerequisites

• Text Books and References

Course Overview 2

• Computer Programming

• Software Development Stages

• Programming Languages

• Object-Oriented Programming (OOP)

This Course
• "Programming with C++" is a foundational course designed to teach the fundamentals

of the C++ programming language.

• This course is often part of computer science or engineering curricula and is suitable
for beginners who are new to programming as well as those who have some prior
experience with other languages.

• Key Topics Covered: Introduction to C++, Data Types and Variables, Control Structures,
Functions, Arrays and Strings, Object-Oriented Programming (OOP) Concepts,
Operator Overloading, File Handling.

Course Overview 3

Course Outcomes
• By the end of the course, students should be able to:

• Write, compile, and debug C++ programs.

• Understand and apply fundamental programming concepts.

• Utilize object-oriented programming principles to design and implement software.

• Work with file I/O for basic data storage and retrieval.

Course Overview 4

Class Duration
• The duration of each semester will be 19 weeks whose breakdown is as follows:

• For theoretical course (Credit 3.0), three hours class will be conducted in a week. For
lab course (Credit 1.5), three hours practical class will be conducted in a week

Course Overview 5

Class 14 weeks
Recess before Semester Final Examination 2 weeks
Semester Final Examination 3 weeks
Total 19 weeks

Course Evaluation
• Evaluation System for Theoretical Course - The marking and student evaluation system will

be as follows:

1. Continuous Assessments : 40%

a. Class attendance : 10%

b. Midterm Exam-1 : 10%

c. Midterm Exam-2 : 10%

d. Midterm Exam-3 : 10%

2. Semester Final Exam : 60%

3. Total : 100%

Course Overview 6

Course Evaluation
• Evaluation System for Lab Course - The marking and student evaluation system will be as

follows:

1. Continuous Assessments : 40%
a. Class attendance : 10%
b. Lab Report : 10%
c. Continuous Evaluation : 20%

2. Lab Final Exam : 60%
a. Viva Voce : 20%
b. Lab Test : 30%
c. Ans. Script : 10%

3. Total : 100%

Course Overview 7

Class Attendance
• A student shall have to attend

at least 75% of theoretical and
practical classes held in a
course.

• In case of shortage of
attendance (not bellow 60%),
student will be allowed to sit
for examination after paying of
taka 500/- as irregular fee for
each course in university
account.

• Below 60% will NOT be allowed
to sit for examination.

Course Overview 8

• The distribution of marks for class attendance
(theoretical and practical) will be as follows:

Attendance Marks
90% and above
85% to 89%
80% to 84 %
75% to 79 %
70% to 74%
65% to 69%
60 % to 64%
55% to 59 %
50% to 54%
Less than 50%

10
09
08
07
06
05
04
03
02
00

The Grading System
• Letter grades and corresponding grade points will be awarded in accordance with the

provisions shown below:

Course Overview 9

Numerical Grade Letter grade Grade Point Interpretation

80% and above A+ 4.00 Outstanding

75% to less than 80% A 3.75 Excellent

70% to less than 75% A- 3.50 Very Good

65% to less than 70% B+ 3.25 Good

60% to less than 65% B 3.00 Satisfactory

55% to less than 60 B- 2.75 Nearly Satisfactory

50% to less than 55% C+ 2.50 Average

45% to less than 50% C 2.25 Nearly Average

40% to less than 45% D 2.00 Poor

Less than 40% F 0 Fail

Course Contents
• CSE 232: Programming with C++

Credits: 1.5; Full Marks: 100; Final Exam Time: 6.0 Hours

• Course Syllabus:
• Introduction to C++ programming language: history, and features, basic syntax, data types, variables,

input/output operations.
• Control structures: if-else, switch-case, loops (while, do-while, for), logical and relational operators.
• Introduction to functions: function prototypes, defining and calling functions, pass-by-value and pass-by-

reference, recursion.
• Arrays in C++: declaration, initialization, accessing elements, multi-dimensional arrays.
• Pointers: basics, pointer arithmetic, dynamic memory allocation, arrays vs. pointers, pointers and arrays.
• Introduction to object-oriented programming: classes and objects, encapsulation, constructors and

destructors, Inheritance, base and derived classes, access specifiers, polymorphism, function overriding,
virtual functions, operator overloading, friend functions, static members, namespaces, exception handling.

• File handling in C++: reading from and writing to files, file streams, error handling.
• Advanced C++ Topics and Project Work: Templates, template classes and functions, project work and

presentations.

Course Overview 10

Course Objectives
• The course objectives of "Programming with C++" are designed to ensure that students gain a

solid understanding of both the theoretical and practical aspects of C++ programming. The
key objectives are:

• Introduce students to fundamental programming concepts such as variables, data types, control
structures (loops, conditionals), functions, and basic input/output operations in C++.

• Teach the principles of object-oriented programming using C++. This includes classes, objects,
inheritance, polymorphism, encapsulation, and abstraction.

• Teach file input/output operations in C++ including reading from and writing to files, handling file
streams, and error handling.

• Develop students' problem-solving abilities through programming assignments, projects, and exercises
that require applying C++ concepts to real-world problems.

• Provide opportunities for students to work on larger programming projects individually or in teams,
allowing them to apply their knowledge of C++ to develop complete software applications.

Course Overview 11

Text Books and References
• Online Course Materials:

• https://www.javatpoint.com/cpp-tutorial

• https://www.geeksforgeeks.org/c-plus-plus/

• Online C Compiler:

• https://www.programiz.com/cpp-programming/online-compiler/

• Software (Code:: Blocks):

• https://www.codeblocks.org/downloads/

Course Overview 12

The Complete Reference C++
By Herbert Schildt

Programming & Software Development
With AI and Machine Learning Concepts
By M. M. Rahman

A Complete Guide to Programming in C++
By Ulla Kirch-Prinz

Text Books:

Object Oriented programming with C++
By E. Balagurusamy

The C++ Programming Language

By Bjarne Stroustrup

https://www.javatpoint.com/cpp-tutorial
https://www.geeksforgeeks.org/c-programming-language/
https://www.programiz.com/cpp-programming/online-compiler/
https://www.codeblocks.org/downloads/

Course Prerequisites and Dependencies

• Basic understanding of computers, mathematics, and basic computer programming.

• Some prior programming experience (in languages like C) can be beneficial but is not
always required.

• The course teaching language is English, so students have to have communication,
reading and apprehension skills of English

• This course serves as a gateway to more advanced topics in software development
and other programming languages.

Course Overview 13

Computer Programming

• Computer programming is the process of designing and building software
applications, tools, and systems.

• It involves writing code in a programming language, testing and debugging it, and
then integrating it into a larger software system.

• Programming languages are used to write computer programs.

• The most popular programming languages used today:

• Python, Java, JavaScript, C/C++, C#, PHP, HTML, SQL, Prolog, Swit, Ruby, Go, etc.

Course Overview 14

Software Development Stages

Course Overview 15

• The major stages are summarized below:
1. Problem statement: Identifying and analyzing the problem that the software

is intended to solve.
2. Requirements gathering: Understanding the requirements of the software

system and what it needs to accomplish.
3. Design: Creating a high-level design of the software system, including the

algorithms, data structures, and overall architecture.
4. Coding: Writing the actual code in a programming language, following the

design.
5. Testing: Debugging the code and ensuring that it works correctly through

the use of test cases and other techniques.
6. Documentation: Creating and maintaining documents that describe the

software system, its architecture, design, functionality, and other important
aspects.

7. Maintenance: Updating and fixing the code as needed over time to keep the
software system running smoothly.

Programming Languages…
• Programming languages can be divided into several categories, including:

• Procedural programming languages: These languages use a procedural approach to
programming, where a series of steps or procedures are defined to solve a problem.
Examples of procedural programming languages include C, Pascal, and Fortran.

• Object-oriented programming languages: These languages use an object-oriented
approach to programming, where data is organized into objects, and the behavior of
these objects is defined by the methods that they contain. Examples of object-oriented
programming languages include Java, Python, and Ruby.

• Functional programming languages: These languages use a functional approach to
programming, where functions are first-class citizens and program execution is based on
evaluating mathematical functions. Examples of functional programming languages
include Haskell, Lisp, and Scheme.

Course Overview 16

Programming Languages
• Scripting languages: These languages are typically interpreted rather than compiled and are

used for scripting and automating tasks. Examples of scripting languages include Perl,
JavaScript, and Ruby.

• Logic Programming languages: Logic programming is a type of programming paradigm based
on formal logic. It is used to specify relationships between objects and to define rules that can
be used to deduce new information from existing information. The most well-known logic
programming language is Prolog (Programming in Logic).

• Low-level programming languages: These languages are closer to machine language and
provide direct control over computer hardware. Examples of low-level programming
languages include Assembly and C.

• High-level programming languages: These languages provide a high-level abstraction from
computer hardware and are designed to be easier for humans to read and write. Examples of
high-level programming languages include Python, Java, and Ruby.

Course Overview 17

Object-Oriented Programming (OOP)…

• Object-oriented programming (OOP) is a programming paradigm that is based on the
concept of objects, which are instances of classes that represent real-world entities.

• In an object-oriented programming language, the program is organized around
objects, and objects communicate with each other by sending messages.

Course Overview 18

Object-Oriented Programming (OOP)
• The key features of object-oriented programming languages include:

• Encapsulation: Encapsulation is the mechanism that binds together the data and functions that
operate on that data within an object.

• Inheritance: Inheritance is a mechanism that allows objects to inherit characteristics and behaviors
from parent classes. This allows for the creation of new classes based on existing classes, making it
easier to reuse code and reduce duplicated efforts.

• Polymorphism: Polymorphism is the ability of an object to take on many forms. This can be achieved
through method overriding, where a subclass provides a new implementation of a method defined in
its parent class, or through method overloading, where a single method can have multiple
implementations based on the number or type of its arguments.

• Dynamic Dispatch: Dynamic dispatch is the mechanism by which a method is chosen for execution at
runtime based on the type of object that it is called on.

• Class-based: Object-oriented programming is class-based, which means that objects are instances of
classes, and classes define the data and behaviors that objects have.

Course Overview 19

Course Overview 20

?THE END

Lecture 1
Course Overview

