
Programming with C++

Lecture 5
Control Structures

Prepared by________________________________

Md. Mijanur Rahman, Prof. Dr.
Dept. of Computer Science and Engineering

Jatiya Kabi Kazi Nazrul Islam University, Bangladesh
Email: mijan@jkkniu.edu.bd

Web: www.mijanrahman.com

CSE 232

Contents
C o n t r o l S t r u c t u r e s

• Conditional Control Structures

• Selection Statements

• if statement

• if..else statements

• nested if statements

• if-else-if ladder

• switch statements

• Jump Statements:
• break
• continue
• goto
• return

C++ Control Structures 2

Conditional Control Structures

• Control Structures are statements that change the flow of a program to a different
code segment based on certain conditions.

• The control structures are categorized into three major Conditional types; they are:

1. Decision making and branching statements

a) Selection statements

b) Jump statements

2. Decision making and looping (Iteration)

C++ Control Structures 3

Conditional Control Structures
• Conditional Control Structures statements in C:

1. Selection Statements:
• If statement

• If Else Statement

• Else If statement

• Nested If statement

• Switch statement

2. Iteration Statements:
• For loop

• While loop

• do while loop

C++ Control Structures 4

3. Jump Statements:
• return

• goto

• exit()

• break

• continue

If statement in C++
• if statement is the simplest decision-making statement. It is used to decide whether a certain

statement or block of statements will be executed or not; i.e., if a certain condition is true
then a block of statement is executed otherwise not.

• Here, the condition after evaluation will be either true or false. C++ if statement accepts
Boolean values – if the value is true then it will execute the block of statements below it
otherwise not. If we do not provide the curly braces ‘{‘ and ‘}’ after if(condition) then by
default if statement will consider the first immediately below statement to be inside its block.

C++ Control Structures 5

If Statement in C++
• Example:

C++ Control Structures 6
Flowchart of IF statement

If-else Statement in C++
• The if statement alone tells us that if a condition is true it will execute a block of statements and if the

condition is false it won’t. But what if we want to do something else if the condition is false. Here comes
the C else statement.

• We can use the else statement with if statement to execute a block of code when the condition is false.

Syntax:

C++ Control Structures 7

If-else Statement in C++
• Flowchart of IF-ELSE statement:

C++ Control Structures 8

Nested If-else statement in C++

• A nested if in C++ is an if statement that is the target of another if statement. Nested if
statements mean an if statement inside another if statement. Yes, both C and C++
allow us to nested if statements within if statements, i.e., we can place an if statement
inside another if statement.

• Syntax:

C++ Control Structures 9

Nested If-else statement in C++
• Flowchart of Nested IF-ELSE statement:

C++ Control Structures 10

Nested If-else statement in C++
• Example: Find the Largest Number Among

Three Numbers

C++ Control Structures 11

Else-If Ladder Statement

• The else if statement is an extension of the "if else" conditional branching statement.
When the expression in the "if" condition is "false" another "if else" construct is used
to execute a set statements based on an expression.

• This control structure statement also known as else if ladder statement.

• Syntax:

C++ Control Structures 12

Else-If Ladder Statement

• Flowchart:

C++ Control Structures 13

Else-If Ladder Statement
• Example: Find the Largest Number

Among Three Numbers

C++ Control Structures 14

Switch Statement

• The switch statement in C is an alternate to if-else-if ladder statement which allows us to
execute multiple operations for the different possible values of a single variable called
switch variable.

• Here, We can define various statements in the multiple cases for the different values of
a single variable.

• Thus, a switch statement allows a variable to be tested for equality against a list of
values. Each value is called a case, and the variable being switched on is checked for
each switch case.

C++ Control Structures 15

Switch Statement

• Syntax:

• The syntax for a switch statement in C programming language is as follows −

C++ Control Structures 16

Switch Statement
• The following rules apply to a switch statement −

• The expression used in a switch statement must have an integral or enumerated type, or be of a class type in which the class has a

single conversion function to an integral or enumerated type.

• You can have any number of case statements within a switch. Each case is followed by the value to be compared to and a colon.

• The constant-expression for a case must be the same data type as the variable in the switch, and it must be a constant or a literal.

• When the variable being switched on is equal to a case, the statements following that case will execute until a break statement is

reached.

• When a break statement is reached, the switch terminates, and the flow of control jumps to the next line following the switch

statement.

• Not every case needs to contain a break. If no break appears, the flow of control will fall through to subsequent cases until a break is

reached.

• A switch statement can have an optional default case, which must appear at the end of the switch. The default case can be used for

performing a task when none of the cases is true. No break is needed in the default case.

C++ Control Structures 17

Switch Statement

• Flow Diagram:

C++ Control Structures 18

Switch Statement

• Example:

C++ Control Structures 19

1. int main()

2. {

3. int day;

4. cout<<"Enter the day no (1-7):";

5. cin>>day;

6. switch(day)

7. {

8. case 1:

9. cout<<"Saturday";

10. break;

11. case 2:

12. cout<<"Sunday";

13. break;

14. case 3:

15. cout<<"Monday";

16. break;

17. case 4:

18. cout<<"Tuesday";

19. break;

20. case 5:

21. cout<<"Wednesday";

22. break;

23. case 6:

24. cout<<"Thursday";

25. break;

26. case 7:

27. cout<<"Friday";

28. break;

29. default:

30. cout<<"Invalid input!";

31. break;

32. }

33. return 0;

34. }

Output:

Enter the day no (1-7): 6

Thursday

Jump Statement

• These statements are used in C or C++ for the unconditional flow of control

throughout the functions in a program.

• They support four types of jump statements:

• Break

• Continue

• Goto

• Return

C++ Control Structures 20

Break Statement
• The break statement in C programming has the following two usages −

• This loop control statement is used to terminate the loop. When a break statement is encountered
inside a loop, the loop is immediately terminated and the program control resumes at the next
statement following the loop.

• It can be used to terminate a case in the switch statement.

• If you are using nested loops, the break statement will stop the execution of the
innermost loop and start executing the next line of code after the block.

• Syntax:

• The syntax for a break statement in C is as follows −

break;

C++ Control Structures 21

Break Statement

• Flow Diagram:

C++ Control Structures 22

Continue Statement

• The continue statement in C programming works somewhat like the break statement.
Instead of forcing termination, it forces the next iteration of the loop to take place,
skipping any code in between.
• For the for loop, continue statement causes the conditional test and increment portions of the

loop to execute.

• For the while and do...while loops, continue statement causes the program control to pass to the
conditional tests.

• Syntax:

• The syntax for a continue statement in C is as follows −

continue;

C++ Control Structures 23

Continue Statement

• Flow Diagram:

C++ Control Structures 24

Goto Statement
• The goto statement is known as jump statement in C. As the name suggests, goto is used to transfer the

program control to a predefined label. The goto statement can be used to repeat some part of the code
for a particular condition.

• It can also be used to break the multiple loops which can't be done by using a single break statement.

• However, using goto is avoided these days since it makes the program less readable and complicated.

Syntax:

• The syntax for a goto statement in C is as follows −

Here label can be any plain text except C keyword and it can be set anywhere in the C program above or below to goto statement.

C++ Control Structures 25

Goto Statement

• Flow Diagram:

C++ Control Structures 26

Return Statement

• The return in C or C++ returns the flow of the execution to the function from where it
is called. This statement does not mandatorily need any conditional statements.

• As soon as the statement is executed, the flow of the program stops immediately and
return the control from where it was called.

• The return statement may or may not return anything for a void function, but for a
non-void function, a return value is must be returned.

• Syntax:

• The syntax for a return statement in C is as follows −

return [expression];

C++ Control Structures 27

Example

• C++ program that demonstrates the
use of break, continue, goto, exit, and
return statements.

• This program is a basic menu-driven
calculator that performs addition,
subtraction, multiplication, and division
based on user input.

C++ Control Structures 28

C++ Control Structures 29

C++ Control Structures 30

C++ Control Structures 31

?THE END

Lecture 5
C++ Control Structures

