
Programming with C++

Lecture 7
Array, Matrix, Vector and Pointers

Prepared by________________________________

Md. Mijanur Rahman, Prof. Dr.
Dept. of Computer Science and Engineering

Jatiya Kabi Kazi Nazrul Islam University, Bangladesh
Email: mijan@jkkniu.edu.bd

Web: www.mijanrahman.com

CSE 232

Contents
A r r a y, M a t r i x , Ve c t o r a n d P o i n t e r s

• Array

• Matrix

• Vector

• Pointers

Array, Matrix, Vector and Pointers 2

ARRAY, MATRIX, AND VECTOR IN C++

• An array is a collection of elements of the same data type, stored contiguously in
memory.

• In C++, a matrix isn't a built-in data structure but can be represented in various ways,
such as 2D arrays and vectors. 2D array is an array of arrays, where each inner array
represents a row.

• In C++, vector is a dynamic array-like data structure that can store elements of any
data type.

Array, Matrix, Vector and Pointers 3

ARRAY, MATRIX, AND VECTOR IN C++

• Key Features and Differences:

Array, Matrix, Vector and Pointers 4

Feature Array Matrix Vector

Data Type Same type for all elements Can be individual elements

of different types

Any data type

Size Fixed at declaration Depends on representation Dynamically resizable

Access Efficient by index Depends on representation Efficient by index

Use cases Random access, fixed data Linear algebra, image

processing

Dynamic collections, storing

various data

Array in C++

• In C++, an array is a fixed-size sequence of elements of the same data type. It provides a
way to store and access multiple values of the same type using a contiguous block of
memory.

• Arrays in C++ have a fixed size, which needs to be specified at the time of declaration.
Once an array is created, its size cannot be changed.

• Additionally, arrays do not perform bounds checking, so it's essential to ensure that the
index used to access an element is within the valid range of the array.

Array, Matrix, Vector and Pointers 5

Array in C++

• The following is a brief overview of arrays in C++:

Array, Matrix, Vector and Pointers 6

Array in C++

• The following is a brief overview of arrays in C++:

Array, Matrix, Vector and Pointers 7

Array in C++

• The following is a brief overview of arrays in C++:

Array, Matrix, Vector and Pointers 8

Array in C++

• The following is a brief overview of arrays in C++:

Array, Matrix, Vector and Pointers 9

Array in C++

• A C++ program using arrays.

Array, Matrix, Vector and Pointers 10

C++ Multidimensional Array
• A multidimensional array is an array with more than one dimension. It is the homogeneous

collection of items where each element is accessed using multiple indices.

• Multidimensional Array Declaration:

datatype arrayName[size1][size2]...[sizeN];

• where, datatype: Type of data to be stored in the array.

arrayName: Name of the array.

size1, size2,…, sizeN: Size of each dimension.

• Example:

Two dimensional array: int two_d[2][4];

Three dimensional array: int three_d[2][4][8];

Array, Matrix, Vector and Pointers 11

Matrix (or 2D Array)

• In C++, a 2D array, also known as a matrix, is an array of arrays. It represents a table-like
structure with rows and columns. Each element in the 2D array can be accessed using
two indices: one for the row and another for the column.

• 2D arrays are useful for representing grids, matrices, and other tabular structures.
Remember that 2D arrays have a fixed size, and each row can have a different number of
columns.

Array, Matrix, Vector and Pointers 12

Matrix (or 2D Array)

Array, Matrix, Vector and Pointers 13

Matrix (or 2D Array)

• A brief overview of working with 2D arrays in C++ is given below:

Array, Matrix, Vector and Pointers 14

Matrix (or 2D Array)

• A brief overview of working with 2D arrays in C++ is given below:

Array, Matrix, Vector and Pointers 15

Matrix (or 2D Array)

• A brief overview of working with 2D arrays in C++ is given below:

Array, Matrix, Vector and Pointers 16

Matrix (or 2D Array)

• A brief overview of working with 2D arrays in C++ is given below:

Array, Matrix, Vector and Pointers 17

Matrix (or 2D Array)

• A C++ program using 2D array: This
program uses a 2D array to
represent a multiplication table

Array, Matrix, Vector and Pointers 18

Three-Dimensional Array in C++

• The 3D array is a data structure that stores elements in a three-dimensional cuboid-like
structure. It can be visualized as a collection of multiple two-dimensional arrays stacked
on top of each other. Each element in a 3D array is identified by its three indices: the
row index, column index, and depth index.

Array, Matrix, Vector and Pointers 19

Three-Dimensional Array in C++

• A C++ program using 3D array.

Array, Matrix, Vector and Pointers 20

Vector in C++

• In C++, the std::vector is a dynamic array that provides a flexible and convenient way to
store and manipulate collections of elements.

• It is part of the Standard Template Library (STL) and offers several useful functions and
features.

• Syntax to Declare Vector in C++:

std::vector<dataType> vectorName;

• where the data type is the type of data of each element of the vector. You can remove
the std:: if you have already used the std namespace.

Array, Matrix, Vector and Pointers 21

Vector in C++

• The following is a brief overview of a vector (std::vector) in C++:

Array, Matrix, Vector and Pointers 22

Vector in C++

• The following is a brief overview of a vector (std::vector) in C++:

Array, Matrix, Vector and Pointers 23

Vector in C++

• The following is a brief overview of a vector (std::vector) in C++:

Array, Matrix, Vector and Pointers 24

Vector in C++

• The following is a brief overview of a vector (std::vector) in C++:

Array, Matrix, Vector and Pointers 25

Vector in C++

• The following is a brief overview of a vector (std::vector) in C++:

Array, Matrix, Vector and Pointers 26

Vector in C++

• A C++ Program using vector:

Array, Matrix, Vector and Pointers 27

C++ Pointers

• Pointers are symbolic representations of addresses. They enable programs to simulate
call-by-reference as well as to create and manipulate dynamic data structures. Iterating
over elements in arrays or other data structures is one of the main use of pointers.

• The address of the variable you’re working with is assigned to the pointer variable that
points to the same data type (such as an int or string).

• Syntax:

datatype *var_name;

int *ptr; // ptr can point to an address which holds int data

Array, Matrix, Vector and Pointers 28

C++ Pointers

• How to use a pointer?

1. Define a pointer variable

2. Assigning the address of a variable to a pointer using the unary operator (&) which returns the
address of that variable.

3. Accessing the value stored in the address using unary operator (*) which returns the value of the
variable located at the address specified by its operand.

Array, Matrix, Vector and Pointers 29

C++ Pointers

Array, Matrix, Vector and Pointers 30

C++ Pointers

• C++ program to illustrate Pointers:

Array, Matrix, Vector and Pointers 31

C++ Pointers

• C++ program to illustrate Pointers:

Array, Matrix, Vector and Pointers 32

C++ Pointers

• Array Name as Pointers:

• An array name contains the address of the first element of the array which acts like a
constant pointer. It means, the address stored in the array name can’t be changed.

• For example, if we have an array named val then val and &val[0] can be used
interchangeably.

Array, Matrix, Vector and Pointers 33

C++ Pointers

• C++ program to illustrate Array Name as Pointers:

Array, Matrix, Vector and Pointers 34

Array, Matrix, Vector and Pointers 35

?THE END

Lecture 7
Array, Matrix, Vector and Pointers

