CSE 232

Programming with C++

Lecture 7
Array, Matrix, Vector and Pointers

B g,
7
: §
Eﬁmn, :

Md. Mijanur Rahman, Prof. Dr.
Dept. of Computer Science and Engineering
Jatiya Kabi Kazi Nazrul Islam University, Bangladesh

Email: mijan@jkkniu.edu.bd
Web: www.mijanrahman.com

Prepared by
@M




C

Contents

Array, Matrix, Vector and Pointers

Array
Matrix

Vector 6
Pointers

-4



ARRAY, MATRIX, AND VECTOR IN C++

An array is a collection of elements of the same data type, stored contiguously in
memory.

In C++, @ matrix isn't a built-in data structure but can be represented in various ways,

such as 2D arrays and vectors. 2D array is an array of arrays, where each inner array
represents a row.

In C++, vector is a dynamic array-like data structure that can store elements of any
data type.



ARRAY, MATRIX, AND VECTOR IN C++
Key Features and Differences:

| Feawre | Amy | Matix | Vector

Data Type Same type for all elements Can be individual elements Any data type
of different types

Fixed at declaration Depends on representation Dynamically resizable
Efficient by index Depends on representation Efficient by index

Random access, fixed data Linear algebra, image  Dynamic collections, storing
processing various data




Array in C++

In C++, an array is a fixed-size sequence of elements of the same data type. It provides a
way to store and access multiple values of the same type using a contiguous block of

memory.

Arrays in C++ have a fixed size, which needs to be specified at the time of declaration.
Once an array is created, its size cannot be changed.

Additionally, arrays do not perform bounds checking, so it's essential to ensure that the
index used to access an element is within the valid range of the array.

Array in C++

Array Elements

It & & 1
Array [ 2 H 4 H 8 H 12“16 “18]

0 ] 2 3 4 5 «— Array Indexes




Array in C++

The following is a brief overview of arrays in C++:

1. Declaration and Inmitialization: An array is declared by
specifying the data type of its elements and its size. For examples:

int numbers[5]; // Declares an array of integers with size 5
float scores[10]; // Declares an array of floats with size 10
char name[20]; // Declares an array of characters with size 20

It can also be initialized during declaration, as follows:

int numbers[] = {1, 2, 3, 4, 5}; // Initializes an integer array with
initial values

char greeting[] = "Hello"; // Initializes a character array with a
string



Array in C++

The following is a brief overview of arrays in C++:

2. Accessing Elements: Elements in an array can be accessed using
the subscript operator ([]).

int numbers[] = {10, 20, 30, 40, 50};

int firstElement = numbers[0]; // Accesses the first element of the
array

int secondElement = numbers[1]; // Accesses the second element
of the array

// Modifying an element
numbers[2] = 35;



Array in C++

The following is a brief overview of arrays in C++:

3. Size of an Array: The size of an array i1s determined by the
number of elements it can hold. The sizeof operator is used to get
the size of the array. For example:

int numbers[] = {10, 20, 30, 40, 50};
int size = sizeof(numbers) / sizeof(numbers[0]); // Computes the
size of the array

4. Modifying the Array: Elements of an array can be modified by
assigning new values using the subscript operator, as follows:

int numbers[] = {10, 20, 30, 40, 50};
numbers[2] = 35; // Modifies the third element of the array



Array in C++

The following is a brief overview of arrays in C++:

5. Iterating Over the Array: A loop statement (e.g., for, while, or
do-while) 1s used to iterate over the elements of an array. For
example:

int numbers[] = {10, 20, 30, 40, 50}

for(inti=0;i1<5; ++i){
std::cout << numbers[i] << " ";

;

std::cout << std::endl;



Array in C++

A C++ program using arrays.

) Terminal

Sum of the numbers: 38
Average of the numbers: 6

1
2
3

#include <iostream>
using namespace std;

4~ 1nt main{) {

o ~] o

11
12
13
14
15~
16
17
18
19
20
21
22
23
24
25
26
27

// Declare and initialize the array
int numbers[] = {2, 4, 6, 8, 10};
// Calculate array size

const int size = sizeof(numbers) / sizeof(numbers[0]);

// Initialize variables for sum and average
int sum = 0;
double average = 0.0;

// Calculate the sum
for (int 1 = 0; 1 < size; ++1) {
sum += numbers[1i];

// Calculate the average
average = static_cast<double>(sum) / size;

// Print the results
cout << "Sum of the numbers:

L1

<< sum << endl;

cout << “"Average of the numbers: " << average <<

return 0;

endl];



C++ Multidimensional Array

A multidimensional array is an array with more than one dimension. It is the homogeneous
collection of items where each element is accessed using multiple indices.

Multidimensional Array Declaration:
datatype arrayName|sizel][size2]...[sizeN];
where, datatype: Type of data to be stored in the array.
arrayName: Name of the array.

sizel, size2,..., sizeN: Size of each dimension.

Example:
Two dimensional array: int two_d[2][4];

Three dimensional array: int three_d[2][4][8];



Matrix (or 2D Array)

In C++, a 2D array, also known as a matrix, is an array of arrays. It represents a table-like
structure with rows and columns. Each element in the 2D array can be accessed using
two indices: one for the row and another for the column.

2D arrays are useful for representing grids, matrices, and other tabular structures.
Remember that 2D arrays have a fixed size, and each row can have a different number of

columns.



.

Matrix (or 2D Array)

Column 0 Column1 Column 2




Matrix (or 2D Array)

A brief overview of working with 2D arrays in C++ is given below:

1. Declaration and Inmitialization: A 2D array is declared by
specifying the data type of its elements, the number of rows, and
the number of columns. For example:

int matrix[3][4]; // Declares a 2D array with 3 rows and 4 columns

It can also be initialized during declaration, as follows:

int matrix[3][4] ={
{1,2,3,4}, //Row0O
{5,6,7,8}, //Row1l
{9,10,11, 12} // Row 2
I



Matrix (or 2D Array)

A brief overview of working with 2D arrays in C++ is given below:

2. Accessing Elements: Elements in a 2D array can be accessed
using the row and column indices. Indices start from 0. For
example:

int matrix[3][4] ={
{1,2,3,4],
{5, 6,7, 8],
{9, 10, 11, 12}

IF

int element = matrix[1][2]; // Accesses the element at row 1,
column 2

// Modifying an element
matrix[0][3] = 100;



Matrix (or 2D Array)

A brief overview of working with 2D arrays in C++ is given below:

3. Size of a 2D Array: The size of a 2D array can be determined
using the number of rows and columns. For example:

int matrix[3][4] ={
1, 2, 3, 4},
{5, 6,7, 8},
[9, 10, 11, 12}

7

int numRows = sizeof(matrix) / sizeof(matrix[0]);
int numCols = sizeof(matrix[0]) / sizeof(matrix[0][0]);



Matrix (or 2D Array)

A brief overview of working with 2D arrays in C++ is given below:

4. Iterating Over a 2D Array: The nested loops, such as a pair of
for loops, are used to iterate over the elements of a 2D array. For
example:

int matrix[3][4] ={
{1,2,3,4}
{5,6,7,8},
{9, 10, 11, 12}

17

for (int row = 0; row < 3; ++row) {
for (int col = 0; col < 4; ++col) {
std:zcout << matrix[row][col] << " ";
}
std::cout << std::endl;

!



1 #include <iostream>

2 using namespace std;

3

4- 1nt main() {

5 // Define the size of the array

Matrix (or 2D Array) 6 const int size = 10;
7
. . 8 // Create a 2D array to store the results
A C++ program using 2D array: This 9 int multiplicationTable[sizel[size];
10
program uses d 2D array tO 11 // Generate the multiplication table
represent a multiplication table T
13~ for (int j = 0; j < size; ++j) {
14 multiplicationTable[i][j] = (i + 1) * (j + 1);
15 b5
16 hs
17

18 // Print the multiplication table
19 cout << "The Multiplication Table:" << endl;

BJverminal ‘3 20~ for (int i = 0; 1 < size; ++i) {
The Multiplication Table: 21« fOl" (lﬂt ] — O, J < SiZE; ++j) {
1 2 3 4 5 6 7 8 9 18

2 4 6 8 10 12 14 16 18 20 22 cout << multiplicationTable[i][]] << "\t";
3 6 S 12 15 18 21 24 27 3e 23 }

4 8§ 12 16 28 24 28 32 36 4e )

5 10 15 20 25 30 35 40 45 50 24 cout << endl;

6 12 18 24 30 36 42 48 54 6@ 25 +

7 1-1 21 f‘s 35 42 m:) ?e ?5 78 26

8§ 16 24 32 40 48 56 B4 72 8@

9 18 27 36 45 54 63 72 Bl 9@ 27 return 0;

-
o
»
o
w
o

40 S8 60 70 8@ 99 1ee 28 }



Three-Dimensional Array in C++

The 3D array is a data structure that stores elements in a three-dimensional cuboid-like
structure. It can be visualized as a collection of multiple two-dimensional arrays stacked

on top of each other. Each element in a 3D array is identified by its three indices: the
row index, column index, and depth index.

Columns

5 8
[ )|
Column 1 Column 2 Column 3

-
Row 1 111 112 113
w
(33_4 Row 2 o1 21 212 213
- 311 312 313
Row 3 131 | 221 |
= 551 321 322 323

331 332 333



1 #include <iostream=
2 using namespace std;
3 1int main()

4-
5 int count = 0;
- H H 1 6 // declaring 3d array
Three-Dimensional Array in C++ ¢ [/«
8 // initializing the array
A C++ program using 3D array. 9+ for (int i=0;1i<2; i) {
10~ for (int j =0; j < 2; j++) {
11~ for (int k = 0; k < 3; k++) {
12 x[11[J]1[k] = count;
x[e][e][e] = e 13 count++;
x[e][e][1] = 1 14 }
x[e][e][2] = 2 P
x[e][1][e] = 3 17 // printing the array
x[e][1][1] = 4 18~ for (int i = 0; i < 2; i++) {
x[0][1][2] = 5 19~ for (int j =0; j < 2; j++) {
x[1][@][e] = 6 20~ for(yﬁ k =0; k <3; kt+) { o o
21 printf("x[%d][%d][%d] = %d \n", 1, j, k, x[1][j1[Kk]):
x[1][e][1] = 7 22 count++;
x[1][e][2] = 8 23 }
x[1][1][e] = 9 24 !
25 }
1]1[1][1] = 1@
x[11[1][1] 26 return 0;
x[1][1][2] = 11 27 [¥



Vector in C++

In C++, the std::vector is a dynamic array that provides a flexible and convenient way to
store and manipulate collections of elements.

It is part of the Standard Template Library (STL) and offers several useful functions and
features.

Syntax to Declare Vector in C++:
std::vector<dataType> vectorName;

where the data type is the type of data of each element of the vector. You can remove
the std:: if you have already used the std namespace.



Vector in C++

The following is a brief overview of a vector (std::vector) in C++:

1. Declaration and Initialization: A vector can be declared and
initialized using various methods. For examples:

// Empty vector
std::vector<int> numbers;

// Vector with initial size and default value

std::vector<int> scores(5, 0); // Initializes a vector of size 5 with all
elements as 0

// Vector with initializer list
std::vector<int> data={1, 2, 3, 4, 5};



Vector in C++

The following is a brief overview of a vector (std::vector) in C++:

2. Accessing Elements: Elements in a vector can be accessed using
the subscript operator ([]) or the at() function. Indices start from 0.
For examples:

std::vector<int> numbers = {10, 20, 30, 40, 50};

int firstElement = numbers[0]; // Access first element
int secondElement = numbers.at(1); // Access second element

// Modifying an element
numbers[2] = 35;



Vector in C++

The following is a brief overview of a vector (std::vector) in C++:

3. Size and Capacity: The size() function returns the number of
elements currently stored in the vector, while the capacity()
function returns the maximum number of elements the vector can

hold without reallocating memory. For examples:
std::vector<int> numbers = {10, 20, 30, 40, 50};

int size = numbers.size(); // Get the size of the vector
int capacity = numbers.capacity(); // Get the capacity of the
vector



Vector in C++

The following is a brief overview of a vector (std::vector) in C++:

4. Modifying the Vector: Elements can be added to the vector using
the push back() function, removed from the vector using the
pop_back() function, or inserted at a specific position using the
insert() function. For examples:

std::vector<int> numbers;

numbers.push_back(10); // Add an element to the end of the
vector

numbers.push_back(20);

numbers.push_back(30);

numbers.pop_back(); // Remove the last element from the vector

numbers.insert(numbers.begin() + 1, 15); // Insert an element at a
specific position



Vector in C++

The following is a brief overview of a vector (std::vector) in C++:

5. Iterating Over the Vector: A range-based for loop or iterator-
based loop can be used to iterate over the elements of a vector. For
examples:

std:vector<int> numbers = {10, 20, 30, 40, 50};

// Range-based for loop
for (int num : numbers) {
cout << num <<"";

}

cout << endl;

// lterator-based loop
for (std::vector<int>::iterator it = numbers.begin(); it I=
numbers.end(); ++it) {

cout << *jit<<"";
]

cout << std::endl;



1 #include <iostream=>
2 #include <vector>
3
4 using namespace std;
[ J
Vector in C++ ot
6~ 1nt main() {
7 // Create a vector to store numbers
A C++ Program using vector: 8 vector<int> numbers = {3, 7, 1, 9, 5};

9
10 // Initialize variables for maximum and minimum
11 int maxElement = numbers[0];
12 int minElement = numbers[0];
13
14 // Find the maximum and minimum element
15~ for (int num : numbers) {
16 maxElement = max(maxElement, num);
17 minElement = min(minElement, num);
18 }
19
20 // Print the results
21 cout << "Maximum element: " << maxElement << endl;
22 cout << "Minimum element: " << minElement << endl;

[2) Terminal P 23

Maximum element: 9 S TEIT g
25 }

Minimum element: 1



C++ Pointers

Pointers are symbolic representations of addresses. They enable programs to simulate
call-by-reference as well as to create and manipulate dynamic data structures. Iterating
over elements in arrays or other data structures is one of the main use of pointers.

The address of the variable you’re working with is assigned to the pointer variable that
points to the same data type (such as an int or string).

Syntax:

datatype *var_name;

int *ptr; // ptr can point to an address which holds int data



C++ Pointers

How to use a pointer?

Define a pointer variable

Assigning the address of a variable to a pointer using the unary operator (&) which returns the
address of that variable.

Accessing the value stored in the address using unary operator (*) which returns the value of the
variable located at the address specified by its operand.

How Pointer Works in C++
Var

10| 20 30
- #2022 I 4

v

Int var = 10;

int*ptr = &var;
*ptr = 20;

int**ptr = &ptr;
**ptr = 30;




How Pointer Works in C++
Var
Int var = 10; > 10] 20 30
#2022 I

int*ptr = &var;

*ptr = 20; }

C++ Pointers

**ptr = 30;

ptr

Ox7fffa0757dd4

Ox7fff98b459%=8 = Address of pointer variable ptr

Var

Value of variable var (*ptr)

Ox7fffa0757cddg « Address of variable var (Stored at ptr)

!




C++ POinterS 1 #include <iostream>

2 using namespace std;

C++ program to illustrate Pointers: S B PR

4- {
5 int var = 100;
6
7 int* ptr;
8 ptr = &var;
9
10 // assign the address of a variable to a pointer
11 cout << "Value at ptr = " << ptr << "\n";
12 cout << "Value at var = " << var << "\n";
13 cout << "Value at *ptr = " << *ptr << "\n";
14 }
15
16 int main()
17~ {
Value at ptr = Ox7fff3378ebd4 18 pFunc():
Value at var = 100 19 return 0:

Value at *ptr = 100 20 }



1  #include <iostream>
2 using namespace std;
3

C++ POinters 4~ void swap(int* a, int* b) {

5 // Dereference pointers to access actual values
. . 6 int temp = *a;
C++ program to illustrate Pointers: 7 %a = b
8 *b = temp;
9 1}
10

11~ int main() {
12 int x =5, y = 10;

13

14 // Print initial values

15 cout << "Before swap: x = " << x << ", y = " << y << endl;
16

17 // Swap using pointers
18 swap(&x, &y).

19

20 // Print swapped values

21 cout << "After swap: x = " << x << ", y = " << y << endl;
Bo) Terminal G5l 22
Before swap: x =5, y = 19 23 return 0;

After swap: x = 18, y = § 24 }



C++ Pointers

Array Name as Pointers:

An array name contains the address of the first element of the array which acts like a
constant pointer. It means, the address stored in the array name can’t be changed.

For example, if we have an array named val then val and &val[0] can be used
interchangeably.



C++ Pointers

C++ program to illustrate Array Name as Pointers:

val[0] val[1] val[2]
5 10 15
ptr[0] ptr(1] ptr(2]

Elements of the array are: 5 10 20

1 #include <iostream=
2 using namespace std;

3

4~ int main(){

o ~l o U

11
12
13
14
15
16
17
18 '}

// Declare an array
int val[3] = { 5, 10, 20 };

// declare pointer variable
int* ptr;

// Assign the address of val[0] to ptr

// We can use ptr=&val[0];(both are same)
ptr = val;

cout << "Elements of the array are: "

cout << ptr[0] << " " << ptr[1] << " " << ptr[2];

return 0;



T G

Lecture /
Array, Matrix, Vector and Pointers




