CSE 232

Programming with C++

Lecture 9
Object Oriented Programming (2)

;"""z
gﬁi

Prepared by

®@5Am Md. Mijanur Rahman, Prof. Dr.

| Dept. of Computer Science and Engineering

@ rE'i Jatiya Kabi Kazi Nazrul Islam University, Bangladesh
Email: mijan@jkkniu.edu.bd

Web: www.mijanrahman.com

C

Contents

Object Oriented Programming

C++ Polymorphism
Function Overloading
Operator Overloading
Constructor Overloading
Function Overriding
Exception Handling

C++ Polymorphism

The word “polymorphism” means having many forms. In simple words, we can define
polymorphism as the ability of a message to be displayed in more than one form.

A real-life example of polymorphism is a person who at the same time can have
different characteristics. A man at the same time is a father, a husband, and an
employee.

Thus, the same person exhibits different behavior in different situations. This is called
polymorphism. Polymorphism is considered one of the important features of Object-
Oriented Programming.

Function Overloading

When there are multiple functions with the same name but different parameters, then
the functions are said to be overloaded, hence this is known as Function Overloading.

Functions can be overloaded by changing the number of arguments or/and changing
the type of arguments.

In simple terms, it is a feature of object-oriented programming providing many
functions that have the same name but distinct parameters when numerous tasks are
listed under one function name.

Function Overloading

The parameters should follow any one or more than one of the following conditions
for Function overloading:

Parameters should have a different type
add(int a, int b)
add(double a, double b)

Function Overloading

C++ Program Example:

sum
sum

350
51.55

1 #include <iostream>
2 using namespace std;

3

4 yoid add(int a, int b)

5+ {

6 int ¢ = a+b;

7 cout << "sum = " << ¢ << endl;
8 1}

9

10 void add(double a, double b)
11~ {

12 double ¢ = a+b;

13 cout << "sum = " << ¢ << endl;
14 }

15

16 // Driver code
17 int main()

18- {

19 add(100, 250);

20 add(25.30, 26.25);
21

22 return 0;

23 }

1 #include <iostream>
2 using namespace std;
3

4. class Calculator {

Function Overloading : pustic:

6 // Overloaded max function for integers
7= int max(int a, int b) {
C++ Program Example: 3 return (a > b) ? a : b:
9 }
10 // Overloaded max function for doubles
11~ double max(double a, double b) {
12 return (a > b) ? a : b;
13 }
14 // Overloaded max function for characters
15~ char max(char a, char b) {
16 return (a > b) ? a : b;
17 }
18 }:
19
20~ int main() {
21 Calculator calc;
22
23 cout << "Max of 3 and 7 (int): " << calc.max(3, 7) << endl;
24 cout << "Max of 4.5 and 2.3 (double): " << calc.max(4.5, 2.3) << endl;
Max of 3 and 7 (int): 7 25 cout << "Max of 'a' and 'z' (char): " << calc.max('a', 'z') << endl;
Max of 4.5 and 2.3 (double): 4.5 26 return 0;

Max of 'a' and 'z' (char): z 27 }

Operator Overloading

C++ has the ability to provide the operators with a special meaning for a data type, this
ability is known as operator overloading.

For example, we can make use of the addition operator (+) for string class to
concatenate two strings. We know that the task of this operator is to add two
operands.

Thus, a single operator ‘+’, when placed between integer operands, adds them and
when placed between string operands, concatenates them.

Operator Overloading

Example of Operator Overloading in C++

22 + 139

1 #include <iostream>
2 using namespace std;
3~ class Complex {

4 private:

5 int real, imag;
b
7 public:
8 Complex(int r = 0, int 1 = 0)
4 {
10 real = r:
11 imag = i;
12 }
13
14 Complex operator+(Complex obj)
15~ {
16 Complex c;
17 c.real = real + obj.real;
18 Cc.imag = imag + obj.imag;
19 return c;
20 }
21 void print() { cout << real << " + 1" << 1mag <<
22}
23
24 int main()
25+ [{
26 Complex c1(10, 25), c2(12, 14);
27 Complex c3 = c1 + c2;
28 c3.print();

‘An*; }

Operator Overloading

Example:

Time t1: 1h 45m 50s
Time t2: 2h 20m 15s
Time t1 + t2: 4h 6m 5s

1
2
3
4-
5
6
7
8
9
10~
11~
12
13
14
15~
16
17
18
19
20
21
22
23~
24

25
26

#include <iostream>
using namespace std;

class Time {
private:
int hours;
int minutes;
int seconds;

void normalize() {
if (seconds == 60) {
minutes += seconds / 60;
seconds %= 60;

}

if (minutes »>= 60) {
hours += minutes / 60;
minutes %= 60;
}
2
public:

// Constructor

Time(int h = 0, int m = 0, int s = 0){
hours = h; minutes = m; seconds = s;
normalize();

28 // Overloading the + operator to add two Time objects

29~ Time operator + (Time T) {

30 Time R;

37 R.seconds = seconds + T.seconds;

32 R.minutes = minutes + T.minutes;

33 R.hours = hours + T.hours;

34 R.normalize(); // Ensure time is normalized

35 return R;

36 }

37

38 // Display function

39~ void display() {

40 cout << hours << "h " << minutes << "m " << seconds << "s" << endl;
41 }

42},

43

44 - int main() {

45 Time t1(1, 45, 50); // 1 hour, 45 minutes, and 50 seconds
46 Time t2(2, 20, 15); // 2 hours, 20 minutes, and 15 seconds
47 Time t3 = t1 + t2; // Using overloaded + operator to add t1 and t2
48

49 cout << "Time t1: ";

50 t1.display();

51 cout << "Time t2: ";

52 t2.display();

53 cout << "Time t1 + t2: ";

54 t3.display();

55

56 return 0;

57 |}

Operator Overloading

Difference between Operator Functions and Normal Functions

Operator functions are the same as normal functions.

The only differences are, that the name of an operator function is always the
operator keyword followed by the symbol of the operator, and operator functions
are called when the corresponding operator is used.

Constructor Overloading

In C++, We can have more than one constructor in a class with same name, as long as
each has a different list of arguments. This concept is known as Constructor
Overloading and is quite similar to function overloading.

Overloaded constructors essentially have the same name (exact name of the class) and different by
number and type of arguments.

A constructor is called depending upon the number and type of arguments passed.

While creating the object, arguments must be passed to let compiler know, which constructor
needs to be called.

Constructor Overloading

Rectangle 1: Width: 0, Height: 0

Area:

Rectangle 2: Width: 5, Height: 5

Area:

Rectangle 3: Width: 4, Height: 6

Area:

C++ Program Example:

0

25

24

L0 B ¥ ¥ I 0 T T T N e - N O B 7% R O R % O K O UC B % R I VI ¥
B S N R e T = T == B I = N o B S A e I Vo Y+ - B = ¥ s RS FY R N =

1

—~

- int

—

// Method to display dimensions
void display() {

cout << "Width: " << width <<
}

main() {
Rectangle recti;
Rectangle rect2(5);

", Height: "

<< height << endl;

// Calls default constructor
// Calls single-parameter constructor (square)

Rectangle rect3(4, 6); // Calls two-parameter constructor

cout << "Rectangle 1: "
rectl.display();
cout << "Area: " << rectl.area()

cout << "Rectangle 2: "
rect2.display();
cout << "Area: " << rect2.area()

cout << "Rectangle 3: "
rect3.display();

cout << "Area: " << rect3.area()

return 0;

<< endl;

<< endl;

<< endl;

1 #include <iostream>

2 using namespace std;

3

4+ class Rectangle {

5 private:

6 int width;

7 int height;

8

9 public:

10 /I Default constructor

11~ Rectangle(){

12 width = height = 0;

13 }

14

15 /! Constructor with one parameter (for
16 - Rectangle(int side){

17 width = height = side;
18 I3

19
20 /! Constructor with two parameters
21~ Rectangle(int w, int h){

22 width = w; height = h;
23 }

24

25 /! Method to calculate area
26~ int area() {

27 return width * height;
28 }

square)

Function Overriding

Function overriding is a type of polymorphism in which we redefine the member
function of a class which it inherited from its base class.

The function signature remains same but the working of the function is altered to
meet the needs of the derived class.

So, when we call the function using its name for the parent object, the parent class
function is executed. But when we call the function using the child object, the child

class version will be executed.

1 #include <iostream>
2 using namespace std;
3

4- class Parent {

Function Overriding S public:

6 void display()
= {
C++ Example 8 cout << "Base Function" << endl;
9 H
10 };

11
12+ class Child : public Parent {

13 public:
14 vold display()
15~ {
16 cout << "Derived Function" << endl;
17 }
18 };
19
20 int main()
21+ 4
22 Parent P;
23 P.display();
24 Child C;
: 25 C.display();
Base Function 2 T G

Derived Function 27 1}

Exception Handling

An exception is an unexpected problem that arises during the execution of a program

our program terminates suddenly with some errors/issues. Exception occurs during
the running of the program (runtime).

In C++, exceptions are runtime anomalies or abnormal conditions that a program

encounters during its execution. The process of handling these exceptions is called
exception handling.

Using the exception handling mechanism, the control from one part of the program
where the exception occurred can be transferred to another part of the code.

Exception Handling

C++ try and catch

C++ provides an inbuilt feature for Exception Handling. It can be done using the
following specialized keywords: try, catch, and throw with each having a different
purpose.

Syntax of try-catch in C++
try {
// Code that might throw an exception
throw SomeExceptionType("Error message");
}
catch(ExceptionName el) {
// catch block catches the exception that is thrown from try block

}

1 #include <iostream>
2 #include <stdexcept>
e ° 3 using namespace std;
Exception Handling 4
5 int main()
. . . 6~ |{
Examples of Exception Handling in C++ 7ty {
8 int numerator = 10;
9 int denominator = 0;
10 int res;
11
12 // check if denominator is 0 then throw error.
13~ if (denominator == 0) {
14 throw runtime_error("Division by zero not allowed!");
15 }
16
17 res = numerator / denominator;
18 cout =< "Result after division: " << res << endl;
19 1
20 - catch (const exception& e) {
21 // print the exception
22 cout << "Exception: " << e.what() << endl;
23 }
24
25 return 0;

Exception: Division by zero not allowed! 26 |}

T

Lecture 9
Object Oriented Programming (2)

