CSE 232

Programming with C++

Lecture 10
Object Oriented Programming (3)

;"""z
gﬁi

Prepared by

®@5Am Md. Mijanur Rahman, Prof. Dr.

| Dept. of Computer Science and Engineering

@ rE'i Jatiya Kabi Kazi Nazrul Islam University, Bangladesh
Email: mijan@jkkniu.edu.bd

Web: www.mijanrahman.com

C

Contents

Object Oriented Programming

C++ Inheritance

Modes of Inheritance in C++
Types of Inheritance in C++
Polymorphism in Inheritance

Inheritance in C++

The capability of a class to derive properties and characteristics from another class is called

Inheritance. Inheritance is one of the most important features of Object Oriented
Programming in C++.

Syntax of Inheritance in C++
class derived class_name : access-specifier base_class name

{

// body....
b
where,

class: keyword to create a new class
derived_class_name: name of the new class, which will inherit the'base class

access-specifier: Specifies the access mode which can be eitherof private, public or protected. If neither
is specified, private is taken as default.

base-class-name: name of the base class.

Inheritance in C++

Program to Demonstrate the
Inheritance of a Class:

Simple

Roll:
Marks:

101
85.5

13

15

#include <iostream>
using namespace std;
~ class Parent {
public:
int roll;
void printRoll()
' 1
cout =< "Roll: "
H
Ir&
- class Child : public Parent {
public:
float marks;
void printAll()
< 1
cout << “Roll: ™
cout << “"Marks: "
H
re
int main()
- [
Child obj1;
obj1.roll = 101;
obj1.marks = 85.5;
obj1.printAll();
return 0O;
b

<< roll << endl;

<< roll << endl:

<

marks << endl;

Modes of Inheritance in C++

Mode of inheritance controls the access level of the inherited members of the base
class in the derived class. In C++, there are 3 modes of inheritance:

Public Mode

Protected Mode

Private Mode

Public Inheritance Mode:

If we derive a subclass from a public base class. Then the public member of the base
class will become public in the derived class and protected members of the base class
will become protected in the derived class.

Modes of Inheritance in C++

Protected Inheritance Mode:

If we derive a subclass from a Protected base class. Then both public members and
protected members of the base class will become protected in the derived class.

Private Inheritance Mode:

If we derive a subclass from a Private base class. Then both public members and
protected members of the base class will become private in the derived class. They
can only be accessed by the member functions of the derived class.

Private mode is the default mode that is applied when we don’t specify any mode.

Modes of Inheritance in C++

Program to show different kinds of
Inheritance Modes and their Member
Access Levels:

1~ class A {
public:

int x;

int y;

private:
9 int z;
10}
11
12~ class B : public A {
13 // x is public
14 // y 1s protected
15 // z is not accessible from
L
17
18- class C : protected A {
19 // x is protected
20 // y 1s protected
21 /{ z is not accessible from
22 };
23
24 class D : private A // 'private’
25+ {
26 // x 1s private
27 // y 1s private
28 /{ z is not accessible from

29}

2
3
4
5 protected:
6
7
8

is default for classes

Modes of Inheritance in C++

Program to show different kinds of
Inheritance Modes and their Member

Access Levels:

Private Roll = 101
Protected Name

Public Marks

= Rahman
08.25

17
18
19
20
21
22
23
24
25
26
27
28
29
30

#include <iostream>
using namespace std;
- class Base {
private:
int roll = 101;
protected:
char name[10] = "Rahman";
public:
float marks = 98.25;
// function to access private member
int getRoll() { return roll; }
}i
- class PublicDerived : public Base {
public:
// function to access protected member from Base
char * getName() { return name; }
}:
int main()
* |
PublicDerived obj1;
cout << "Private Roll = " << obj1.getRoll() << endl;
cout << "Protected Name = " << obj1.getName() << endl;
cout << "Public Marks = " << objl.marks << endl;
return 0;
}

Types of Inheritance in C++

The inheritance can be classified on the basis of the relationship between the derived
class and the base class. In C++, we have 5 types of inheritances:

Single inheritance

Multilevel inheritance

Multiple inheritance

Hierarchical inheritance

Hybrid inheritance

Types of Inheritance in C++

Single Inheritance: In single inheritance, a class is allowed to inherit from only one
class. i.e. one base class is inherited by one derived class only.

Example:

class A

{

5
class B: public A

{

Types of Inheritance in C++

Multiple Inheritance: Multiple Inheritance is a feature of C++ where a class can inherit from more than
one class. i.e one subclass is inherited from more than one base class.

Example:
class B

{
I
class C

{

7
class A: public B, public C

#include <iostream=

Types of Inheritance in C++

using namespace std;

// first base class
class Dept {
public:
Dept() { cout << "Computer Science & Engineering\n"; }

Multiple Inheritance: C++ Program Example

CO o~ O U1 s LD =
4

}i

—
= w0

// second base class
class Uni {
public:
Uni() { cout << "Jatiya Kabi Kazi Nazrul Islam University\n"; }

e Y
L =
4

&

—
on Ln

// sub class derived from two base classes

17~ class Address : public Dept, public Uni {

18 public:

19 Address() { cout << "Trishal, Mymensingh, Bangladesh.\n"; }
20 };

21

22 int main()

: - : 23~
Computer Science & Englneering 24 E Address obj;

Jatiya Kabi Kazi Nazrul Islam University 75 e
Trishal, Mymensingh, Bangladesh. 26)

Types of Inheritance in C++

Multilevel Inheritance: In this type of inheritance, a derived class is created from another derived class
and that derived class can be derived from a base class or any other derived class. There can be any
number of levels.

Example:
class C

{
I
class B : public C
{

5
class A: public B

[] [J
Types of Inheritance in C++
using namespace std;
// first base class
class Dept {
public:
Dept() { cout << "Computer Science & Engineering\n”; }

Multilevel Inheritance: C++ Program
Example

Co =~ O L1 b= =
4

¥

—
[}

// second sub-class derived from first base class
class Uni: public Dept {

e
-
4

12 public:
13 Uni() { cout << “"Jatiya Kabi Kazi Nazrul Islam University\n"; }
14 };
15
16 // Third sub-class derived from second sub class
17 - class Address : public Uni {
18 public:
19 Address() { cout << "Trishal, Mymensingh, Bangladesh.\n"; }
20 };
21
22 int main()
Computer Science & Engineering 23+ {
Jatiya Kabi Kazi Nazrul Islam University 24 aelle)
25 return 0;

Trishal, Mymensingh, Bangladesh.

P
o
et

Types of Inheritance in C++

Hierarchical Inheritance Example:
class A
In this type of inheritance, more than one {
subclass is inherited from a single base }//bOdVOfthedaSSA'
class. i.e. more than one derived class is class B : public A

{
// body of class B.

}
class C: public A

{
// body of class C.

}
class D :public A

{
// body of class D.

}

created from a single base class.

#include <iostream=>
using namespace std;

// base class
class Vehicle {
public:
Vehicle() { cout << "This is a Vehicle\n"; }

Types of Inheritance in C++

=T R = ¥ L o]
L]

Hierarchical Inheritance: C++ Program }

o

// first sub class
class Car : public Vehicle {
public:
Car() { cout << "This Vehicle is Car\n"; }

|l ol]l
o = O
L

s

—
Wy

// second sub class
class Bus : public Vehicle {
public:
Bus() { cout << "This Vehicle is Bus\n"; }

[I R R e |
= WD 00 =]
1

s

Pl e
[-

int main()

- o

=]
L

This 1s a Vehicle
This Vehicle is Car
This 1s a Vehicle
This Vehicle 1is Bus

(=]
Y

Car obj1;
Bus obj2;
return 0;

(RS T T
-~ o un
—

Types of Inheritance in C++

Hybrid Inheritance

Hybrid Inheritance is implemented by
combining more than one type of
inheritance. For example: Combining
Hierarchical inheritance and Multiple
Inheritance will create hybrid inheritance
in C++

There is no particular syntax of hybrid
inheritance. We can just combine two of
the previous inheritance types.

Example:

class F

{
}

class G

{

}
class B : public F

{

}
class E : public F, public G

{

}
class A : public B {

}
class C : public B {

}

1 #include <iostream=>

2 using namespace std;

3

4- class Vehicle {

public:

Vehicle() { cout << "This is a Vehicle\n"; }

5
Types of Inheritance in C++ 6
7

8
Hybrid Inheritance: C++ Program 9- class Fare {

10 public:

11 Fare() { cout << "Fare of Vehicle\n"; }

12},

13

14~ class Car : public Vehicle {

15 public:

16 Car() { cout << "This Vehical is a Car\n"; }

17},

18

19~ class Bus : public Vehicle, public Fare {

20 public:

21 Bus() { cout << "This Vehicle is a Bus with Fare\.n"; }

22}

23

24 int main()

25+ |{

This is a Vehicle 26 Bus obj1:

Fare of Vehicle 27 return 0:
This Vehicle is a Bus with Fare 28 1}

Polymorphism in Inheritance

In Inheritance, we can redefine the base class
member function in the derived class. This type
of inheritance is called Function Overriding.

Generally, in other programming languages,
function overriding is runtime polymorphism but
in C++, we can do it at both runtime and complile
time. For runtime polymorphism, we have to use
the virtual functions.

1
2
3

#include <iostream>
using namespace std;

4- class Parent {

) int roll = 101;

6 public:

7 void Print()

8~ {

9 cout << "Roll: "
10)

M}

12

13~ class Child :

14 float marks = 65.50;
15 public:

16 void Print()

17~ {

18 cout << "Marks: "
19 }

20 };

21

22 int main()

23+ {

24 Child obj1;

25 obj1.Print();

26 return 0;

27 1}

<< roll << endl;

public Parent {

<< marks << endl;

°

Lecture 10
Object Oriented Programming (3)

