CSE 232

Programming with C++

Lecture 11
File Handling in C++

;"""z
gﬁi

Prepared by

®@5Am Md. Mijanur Rahman, Prof. Dr.
| Dept. of Computer Science and Engineering
@ rE'i Jatiya Kabi Kazi Nazrul Islam University, Bangladesh

Email: mijan@jkkniu.edu.bd
Web: www.mijanrahman.com

C

Contents

File Handling in C++

File Handling through C++ Classes
Opening and Closing Files
Writing to a File

Reading from a File

File Modes

Checking End of File (EOF)

File Pointers and Random Access

File Handling through C++ Classes

File handling is used to store data permanently in a computer. Using file handling we
can store our data in secondary memory (Hard disk).

How to achieve the File Handling?

For achieving file handling we need to follow the following steps:-
STEP 1-Naming a file

STEP 2-Opening a file

STEP 3-Writing data into the file

STEP 4-Reading data from the file

STEP 5-Closing a file.

File Handling through C++ Classes

File handling is an essential feature in programming, allowing us to store data in files
and retrieve it as needed. In C++, file handling is supported by the <fstream> library,

which provides classes and functions for working with files.

File handling in C++ is based on the concept of "streams." A stream is an abstraction
that represents a source or destination of data.

There are three types of file streams:
Input File Stream (ifstream): Used to read data from a file.
Output File Stream (ofstream): Used to write data to a file.
File Stream (fstream): Used for both reading and writing.

File Handling through C++ Classes

The <fstream> library provides these classes:
ifstream (for input)
ofstream (for output)
fstream (for both input and output)

Opening and Closing Files

To work with files in C++, we need to
open them.

The open() function is used to open a file,
and files can be closed using the close()
function.

In this example, input.txt is opened for
reading and output.txt for writing.

#include <iostream>
#include <fstream> // Required for file handling
using namespace std;

- int main() {

ifstream inFile; // Input file stream
ofstream outFile; // Output file stream

/1 Open files
inFile._open("input.txt"); // Open a file to rea
outFile.open("output.txt"); // Open a file to write

/1 Always check if the file is opened successfully
if (!'inFile || 'outFile) {
cout << "File couldn't be opened!" << endl;
return 1; // Exit with an error code

¥

// Work with files here
// Close the files
inFile.close();

outFile.close();

return 0;

1 #include <iostream>
2 #include <fstream=
3 #include <iostream>
4 using namespace std;
5
®a° ° 6~ int main() {
ertlng to a Flle 7 ofstream outFile("example.txt");
8
. . . 9~ if ('outFile) {

The ofstream object is used to write data | 4 cout << "Error opening file for writing!" << endl;

to a file. Once the file is open, we canuse |, , ™"

the insertion operator (<<) to write data. 13 |
14 outFile << "Hello, World!" << endl;
15 outFile << "This is a file handling example in C++." << endl;
16
17 outFile.close();
18 cout << "Data written to file successfully!™ << endl;
19
20 return 0;
21)

This code will create a file called

E example.txt x +

example.txt (or overwrite it if it exists)

and write two lines of text to it. e =

Hello, World!
This is a file handling example in C++.

#include <fstream=
#include <iostream>
#include <string>
using namespace std;

Reading from a File ? o ni]iizr?;a; inFile("example.txt");

[O R

8
. . . 9- if (!inFile) {
The IfStream ObJeCt IS used tO read data 10 cout << "Error opening file for reading!" << endl;
from a file. The extraction operator (>>) . e 1
or getline() function can be used for 13
. 14 string line;
read|ng 15~ while (getline(inFile, line)) { // Read line by line
16 cout << line << endl;
17 3
18
19 inFile.close();
20 return 0;
21)
[W
In this example, each line from Hello, World!

This is a file handling example in C++.

example.txt is read and printed to the
console.

File Modes

When opening files, we can specify various modes to control how the file is accessed:
ios::in — Open for reading.
ios::out — Open for writing.
ios::app — Append to the end of the file.
ios::trunc — Truncate the file (delete content if the file exists).
ios::binary — Open the file in binary mode.

File Modes

When opening files, we can specify various modes to control how the file is accessed:
ios::in — Open for reading.
ios::out — Open for writing.
ios::app — Append to the end of the file.
ios::trunc — Truncate the file (delete content if the file exists).
ios::binary — Open the file in binary mode.

1 #include <iostream>
2 #include <fstream>
3 #include <iostream>
4 using namespace std;
. 5
File Modes O
7 // Open file in append mode
8 ofstream outFile("example.txt", ios::app);
. . . g
In this example, the file example.txt is 0o if CoutFile) |
H 1 1 .o 11 cout << "Error opening file!" << endl;
opened in append mode using ios::app, ; o
so new content will be added at the end 13}
14
without overwrltlng EXIStlng content. 15 outFile << "Appending a new line!" << endl;
16 outFile.close();
17
18 cout << "Data appended to file successfully!"™ << endl;
19 return 0;
20 }
E example.txt X +

o File Edit View

Hello, World!
This is a file handling example in C++.
Appending a new line!

Checking End of File (EOF) 1 #include <iostrean-
2 #include <fstream=
3 #include <iostream>
While reading from a file, it’s essential to) e
check if we’ve reached the end. 6- int main() {
7 ifstream inFile("example.txt");
. 8
The eof() function returns true when the 0. it Cinfile) |
end Of the flle |S reached 10 cout << "Error opening file!" << endl;
) 11 return 1;
12 1
13
14 char ch;
15~ while (inFile >> ch) { // Read character by character
16 cout << ch;
. . 17 +
This example reads and prints each e
character in the file until the end. o e closel):

21 1}

File Pointers and Random Access

1 #include <fstream=

File pointers allow for random access 2 #include <iostream>
. . . . 3 using namespace std;
within files. There are two pointers: 4
5- int main() {
tellg() and seekg() for ifstream to get and set 6 fstream file("example.txt”, ios::in | ios::out);
- 7
the read position. 8. if (Ifile) {
9 cout << "Error opening file!" << endl;
tellp() and seekp() for ofstream to get and set 0 e T
the write position. " ;
13 // Move to a specific position in the file for reading
14 file.seekg(5, ios::beg); // Move 5 bytes from the beginning
15 char ch;
16 file >> ch; // Read character at that position
17 cout << "Character at position 5: " << ch << endl;
18
19 // Move to a specific position in the file for writing
20 file.seekp(10, ios::beg); // Move 10 bytes from the beginning
21 file << "C++"; // Write "C++" at that position
22
23 file.close();
24 return 0;

25 |}

7 4
4
-4

@

Lecture 11
ile Handling in C++

@ THEEND

?

